References

  1. S.L. Wang, Y.M. Tzou, Y.H. Lu, G. Sheng, Removal of 3-chlorophenol from water using rice-straw-based carbon, J. Hazard. Mater., 147 (2007) 313–318.
  2. Charlene McQueen, Comprehensive Toxicology, 3rd ed., Elsevier, 2018.
  3. M. Ahmaruzzaman, Adsorption of phenolic compounds on low-cost adsorbents: A review, Adv. Colloid Interface Sci., 143 (2008) 48–67.
  4. A. Singh, A. Jain, B.K. Sarma, P.C. Hesas, Abhilash, H.B. Singh, Solid waste management of temple floral offerings by vermicomposting using Eisenia fetida, Waste Manage., 33 (2013) 1113–1118.
  5. A. Bhatnagar, M. Sillanpaa, Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment-A review, Chem. Eng. J., 157 (2010) 277–296.
  6. A. Allwar, Characteristics of pore structures and surface chemistry of activated carbons by physisorption, FTIR and Boehm methods, J. Appl. Chem., 2 (2012) 9–15.
  7. B.H. Hameed, I.A.W. Tan, A.L. Ahmad, Adsorption isotherm, kinetic modeling and mechanism of 2,4,6-trichlorophenol on coconut husk-based activated carbon, Chem. Eng. J., 144 (2008) 235–244.
  8. V. Srihari, A. Das, The kinetic and thermodynamic studies of phenol-sorption onto three agro-based carbons, Desalination, 225 (2008) 220–234.
  9. A.T.M. Din, B.H. Hameed, A.L. Ahmad, Batch adsorption of phenol onto physiochemical-activated coconut shell, J. Hazard. Mater., 161 (2009) 1522–1529.
  10. K. Mohanty, M. Jha, B.C. Meikap, M.N. Biswas, Preparation and characterization of activated carbons from terminalia arjuna nut with zinc chloride activation for the removal of phenol from wastewater, Ind. Eng. Chem. Res., 44 (2005) 4128–4138.
  11. M.A. Yan, N. Gao, W. Chu, C. Li, Removal of phenol by powdered activated carbon adsorption, Front. Environ. Sci. Eng., 7 (2013) 158–165.
  12. Y.S. Mohammad, E.M. Shaibu-Imodagbe, S.B. Igboro, A. Giwa, C.A. Okuofu, Modeling and optimization for production of rice husk activated carbon and adsorption of phenol, J. Engineering., 1 (2014) 10.
  13. M. Malhotra, S. Suresh, A. Garg, Tea waste derived activated carbon for the adsorption of sodium diclofenac from wastewater: adsorbent characteristics, adsorption isotherms, kinetics, and thermodynamics, Environ. Sci. Pollut. Res., 25 (2018) 32210–32220.
  14. S.L. Shi, Jun-Ping Lv, Q. Liu, F.R Nan, X.Y. Jiao, J. Feng, S.L. Xie, Application of Phragmites australis to remove phenol from aqueous solutions by chemical activation in batch and fixedbed columns, Environ. Sci. Pollut. Res., 25 ( 2018) 23917–23928.
  15. B.J. Hess, P. Kolar, J.J. Classen, D. Knappe, J.J. Cheng, Evaluation of waste eggshells for adsorption of copper from synthetic and swine wastewater, J. Amer. Soc. Agric. Bio. Eng., 61 (2018) 967–976.
  16. P.C. Madu, L. Lajide, Physicochemical characteristics of activated carbon derived from melon seed husk, J. Chem. Pharm. Res., 5 (2013) 95–98.
  17. S.M. Yakout, G.S. El-Deen, Characteristics of activated carbon by phosphoric acid activation of olive stones, Arab. J. Chem., 12 (2012) 273.
  18. C.L. Mangun, M.A. Daley, R.D. Braatz, J. Economy, Effect of pore size on adsorption of hydrocarbons in phenolic-based activated carbon fibers, Carbon, 39 (1997) 123–131.
  19. O.F. Okeola, E.O. Odebunmi, O.M. Ameen, Comparison of sorption capacity and surface area of activated carbon prepared from jatropha curcas fruit pericarp and seed coat, Bull. Chem. Soc. Ethiop., 26 (2012) 171–180.
  20. S.M. Yakout, G.S. El-Deen, Characteristics of activated carbon by phosphoric acid activation of olive stones, Arab. J. Chem., 9 (2016) S1155–S1162.
  21. A. Kumar, H.M. Jena, Preparation and characterization of high surface area activated carbon from Fox nut (Euryale ferox) shell by chemical activation with H3PO4, Results Physics, 6 (2016) 651–658.
  22. S. Maulina, M. Iriansyah, Characteristics of activated carbon resulted from pyrolysis of the oil palm fronds powder, Mater. Sci. Eng., 309 (2018) p. 012072.
  23. A. Singh, A. Jain, B.K. Sarma, P.C. Hesas Abhilash, H.B. Singh, Solid waste management of temple floral offerings by vermicomposting using Eisenia fetida, Waste Manage., 33 (2013) 1113–1118.
  24. A.S. Devi, M.H. Kalavathy, L.R. Miranda, Optimization of the process parameters for the preparation of activated carbon from low cost Phoenix dactylifera using response surface methodology, Austin Chem. Eng., 2 (2015) 1021.
  25. H.M. Al-Swaidan, A. Ahmad, Synthesis and characterization of activated carbon from Saudi Arabian dates tree’s fronds wastes, Bio. Environ. Eng., 20 (2011).
  26. M.K. Dahri, M.R.R. Kooh, L.B.L. Lim, Application of Casuarina equisetifolia needle for the removal of methylene blue and malachite green dyes from aqueous solution, Alexandria Eng. J., 54 (2016) 1253–1263.
  27. M.G. Alalm, M. Nasr, Artificial intelligence, regression model, and cost estimation for removal of chlorothalonil pesticide by activated carbon prepared from casuarina charcoal, Sustain. Environ. Res., 28 (2018) 101–110.
  28. M. Rajeswari, K. Arivalagan, Kinetic and thermodynamic studies on the adsorption behavior of Crocein Orange G dye using Casuarina equisetifolia bark carbon, Int. J. Res. Appl. Sci. Eng. Technol., 5 (2017) 2321–9653.
  29. N. Packialakshmi, S. Naziya, Fourier transform infrared spectroscopy analysis of various solvent extracts of Caralluma fimbriyata, Asian J. Biomed. Pharm. Sci., 4(36) (2014) 20–25.
  30. A.M. El-Wakil, W.M.A. El-Maaty, F.S. Awad, Removal of lead from aqueous solution on activated carbon and modified activated carbon prepared from dried water hyacinth plant, J. Anal. Bioanal. Tech., 5 (2014) 2155–9872.
  31. F.W. Shaarani, B.H. Hameed, Ammonia-modified activated carbon for the adsorption of 2, 4-dichlorophenol, Chem. Eng. J., 169 (2011) 180–185.
  32. A.L.A.M. Zahangir, S.A. Muyibi, J. Toramae, Statistical optimization of adsorption processes for removal of 2,4-dichlorophenol by activated carbon derived from oil palm empty fruit bunches, J. Environ. Sci., 19 (2007) 674–677.
  33. C. Namasivayam, D. Sangeetha, Equilibrium and kinetic studies of adsorption of phosphate onto ZnCl2 activated coir pith carbon, J. Colloid Interface Sci., 280 (2004) 359–365.
  34. M. Sathishkumar, A.R. Binupriya, D. Kavitha, S.E. Yun, Kinetic and isothermal studies on liquid-phase adsorption of 2,4-dichlorophenol by palm pith carbon, Bioresour. Technol., 98 (2007) 866–873.
  35. M. Radhika, K. Palanivelu, Adsorptive removal of chlorophenols from aqueous solution by low cost adsorbent-kinetics and isotherm analysis, J. Hazard. Mater., 138 (2006) 116–124.
  36. H. Allaboun, F.A. Abu Al-Rub, Removal of 4-chlorophenol from contaminated water using activated carbon from dried date pits: equilibrium, kinetics, and thermodynamics analyses, Materials, 9 (2016) 251.
  37. I.A.W. Tan, A.L. Ahmad, B.H. Hameed, Adsorption of basic dye on high surface-area activated carbon prepared from coconut husk: Equilibrium, kinetic and thermodynamic studies, J. Hazard. Mater., 154 (2007) 337–346.
  38. F.C. Wu, R.L. Tseng, R.-S. Juang, Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics, Chem. Eng. J., 153 (2009) 1–8.
  39. F.C. Wu, R.L. Tseng, R.S. Juang, Preparation of highly microporous carbons from for wood by KOH activation for adsorption of dyes and phenols from water, Separ. Purif. Technol., 47 (2005) 10–19.
  40. S. Varghese, V.P. Vinod, T.S. Anirudhan, Kinetic and equilibrium characterization of phenols adsorption onto a novel activated carbon in water treatment, Indian J. Chem. Technol., 11 (2004) 825–833.