References

  1. A.B. Dichiara, M.R. Webber, W.R. Gorman, R.E. Rogers, Removal of copper ions from aqueous solutions via adsorption on carbon nanocomposites, ACS Appl. Mater. Interf., 7 (2015) 15674–15680.
  2. Z. Zhu, D. Yin, Q. Yang, Hierarchical hollow spheres composed of ultrathin Fe2O3 nanosheets for lithium storage and photocatalytic water oxidation, Energy Environ. Sci., 6 (2013) 987–993.
  3. Y. Shirota, H. Kageyama, Charge carrier transporting molecular materials and their applications in devices, Chem. Rev., 107 (2007) 953− 1010.
  4. D. Mahanta, G. Madras, S. Radhakrishnan, S. Patil, Adsorption of sulfonated dyes by polyaniline emeraldine salt and its kinetics, J. Phys. Chem. B, 112 (2008) 10153.
  5. N. Chowdhury, S.R. Jesmeen, M.M. Hossain, Removal of dyes from water by conducting polymeric adsorbent, Polym. Adv. Technol., 15 (2004) 633.
  6. D. Mahanta, G. Madras, S. Radhakrishnan, S. Patil, Adsorption and desorption kinetics of anionic dyes on doped polyaniline, J. Phys. Chem. B, 113 (2009) 2293.
  7. S.E. Shaheen, C.J. Brabec, F. Padinger, T. Fromherz, J.C. Hummelen, N.S. Sariciftci, 2.5% efficient organic plastic solar cells, Appl. Phys. Lett., 78 (2001) 841.
  8. X. Li, D. Wang, G. Cheng, Q. Luo, J. An, Y. Wang, Preparation of polyaniline-modified TiO2 nanoparticles and their photocatalytic activity under visible light illumination, Appl. Catal. B: Environ., 81 (2008) 267–273.
  9. K.U. Savitha, H.G. Prabu, One-pot synthesis of PANI–TiO2 (anatase) hybrid of low electrical resistance using TiCl4 as precursor, Mater. Chem. Phys., 130 (2011) 275.
  10. M.A. Salem, A.F. Al-Ghonemiy, A.B. Zaki, Photocatalytic degradation of Allura red and Quinoline yellow with polyaniline/TiO2 nanocomposite, Appl. Catal. B, 91 (2009) 59.
  11. Y.J. Wang, J. Xu, W.Z. Zong, Y.F. Zhu, Enhancement of photoelectric catalytic activity of TiO2 film via polyaniline hybridization, J. Solid State Chem., 184 (2011) 1433.
  12. G.Z. Liao, S. Chen, X. Quan, Y.B. Zhang, H.M. Zhao, Remarkable improvement of visible light photocatalysis with PANI modified core–shell mesoporous TiO2 microspheres, Appl. Catal. B, 102 (2011) 126.
  13. Q.Z. Yu, M. Wang, H.Z. Chen, Z.W. Dai, Polyaniline nanowires on TiO2 nano/microfiber hierarchical nano/microstructures: Preparation and their photocatalytic properties, Mater. Chem. Phys., 129 (2011) 666.
  14. H. Zhang, R.L. Zong, Y.F. Zhu, Photocorrosion inhibition and photoactivity enhancement for zinc oxide via hybridization with monolayer polyaniline, J. Phys. Chem. C, 113 (2009) 4605.
  15. H. Zhang, Y.F. Zhu, Significant visible photoactivity and antiphotocorrosion performance of CdS photocatalysts after monolayer polyaniline hybridization, J. Phys. Chem. C, 11(4) (2010) 5822.
  16. K. He, M.T. Li, L.J. Guo, Preparation and photocatalytic activity of PANI-CdS composites for hydrogen evolution, Int. J. Hydrogen Energy, 37 (2012) 755.
  17. K. Kaviyarasu, P.P. Murmu, J. Kennedy, F.T. Thema, M. Maaza, Structural, optical and magnetic investigation of Gd implanted CeO2 nanocrystals, Nucl. Instrum. Methods Phys. Res. Sec. B: Beam Interact. Mater. Atoms, 409 (2017) 147–152.
  18. K. Kaviyarasu, P. Devarajan, A convenient route to synthesize hexagonal pillar shaped ZnO nanoneedles via CTAB surfactant, Adv. Mat. Lett., 4 (2013) 582–585.
  19. G. Ćirić-Marjanović, Recent advances in polyaniline research: Polymerization mechanisms, structural aspects, properties and applications, Synthetic Metals, 117 (2013) 1–47.
  20. J.N. Ansari, S. Khasim, A.S. Roy, Synthesis, characterization, dielectric and rectification properties of PANI/Nd2O3:Al2O3 nanocomposites, Polym. Advan. Technol., 27 (2016) 1064–1071.
  21. P. Saini, M. Arora, V. Choudhary, High permittivity polyaniline–barium titanate nanocomposites with excellent electromagnetic interference shielding response, Nanoscale, 5 (2013) 4330–4336.
  22. A. Khan, A.P. Khan, M. Rathore, Preparation, properties and applications of organic–inorganic hybrid nanocomposite poly(anilineco-o-toluidine) tungstomolybdate, J. Mol. Liq., 216 (2016) 646–653.
  23. S. Bai, Y. Ma, R. Luo, A. Chen, D. Li, Room temperature triethylamine sensing properties of polyaniline–WO3 nanocomposites with p–n heterojunctions, RSC Adv., 6 (2016) 2687–2694.
  24. J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium, Phys. Status Solidi (b), 15 (1966) 627–637.
  25. W. Yang, Z. Gao, J. Wang, Synthesis of hollow polyaniline nano-capsules and their supercapacitor application, J. Power Sources, 272 (2014) 915–921.
  26. S. Zhang, S. Kan, J. Kan, Chemical synthesis and characterization of polyaniline nanofiber doped with gadolinium chloride, J. Appl. Polym. Sci., 100 (2006) 946–953.
  27. T. Remyamol, G. Pramod, H. John, Enhanced photocatalytic activity of polyaniline through noncovalent functionalization with graphite oxide, Mater. Res. Express, 1 (2014) 045602.
  28. F. Ahmad Rafiqi, K. Majid, Synthesis, characterization, luminescence properties and thermal studies of polyaniline and polythiophene composites with rare earth terbium (III) complex, Synthetic Metals, 202 (2015) 147–156.
  29. S.R. Takpire, K.R. Nemade, S.A. Waghuley, Further exploration of photovoltaic performance of polythiophene-co-polyaniline–Ti copolymer composites PV system, Mater. Design, 101 (2016) 294–300.
  30. S.Mandal, S.S. Mahapatra, R.K. Patel, Enhanced removal of Cr(VI) by cerium oxide/polyaniline composite: optimization and modeling approach using response surface methodology and artificial neural networks, J. Environ. Chem. Eng., 3 (2015) 870–885.
  31. A.H. Elsayed, M.S. MohyEldin, A.M. Elsyed, A.H. Abo Elazm, E.M. Younes, H.A. Motaweh, Synthesis and properties of polyaniline/ferrites nanocomposites, J. Electrochem. Sci., 6 (2011) 206–221.
  32. F. Meng, L. Wang, J. Cui, Controllable synthesis and optical properties of nano-CeO2 via a facile hydrothermal route, J. Alloys Comp., 556 (2013) 102–108.
  33. S. Pandiaraj, K. Sreekumar, Flexible solid-state supercapacitors based on freestanding electrodes of electrospun polyacrylonitrile@ polyaniline core-shell nanofibers, Appl. Mater. Interface, 7 (2015) 7661–7669.
  34. J. Ma, M.J. Antony, AOT assisted preparation of ordered, conducting and dispersible core-shell nanostructured polythiophene- MNCNT nanocomposites, Polymer, (2016) 09–047.
  35. L. Ai, Y. Liu, X.Y. Zhang, X.H. Ouyang, Z.Y. Ge, A facile and template-free method for preparation of polythiophene microspheres and their dispersion for waterborne corrosion protection coatings, Synthetic Metals, 191 (2014) 41–46.
  36. S. Syed, R. Saidur, Synthesis of 2D boron nitride doped polyaniline hybrid nanocomposites for photocatalytic degradation of carcinogenic dyes from aqueous solution, Arabian J. Chem., 11 (2018) 1000–1016.
  37. K. Parida, S. Sahu, K. Reddy, P. Sahoo, A kinetic, thermodynamic, and mechanistic approach toward adsorption of methylene blue over water-washed manganese nodule leached residues, Ind. Eng. Chem. Res., 50 (2010) 843–848.
  38. S. Shahabuddin, N.M. Sarih, F.H. Ismail, M.M. Shahid, N.M. Huang, Synthesis of chitosan grafted-polyaniline/Co3O4 nanocube nanocomposites and their photocatalytic activity toward methylene blue dye degradation, RSC Adv., 5 (2015) 83857–83867.
  39. R. Saravanan, F. Gracia, Conducting PANi stimulated ZnO systems for visible light photocatlytic degradation of coloured dyes, J. Molec. Liq., 221 (2016) 1029–1033.
  40. S. Badra, D. Khastgir, N.K. Singha, J.H. Lee, Progress in preparation and applications of polyaniline, Progr. Polym. Sci., 34 (2009) 783–810.
  41. S. Yang, X. Cui, J. Gong, Y. Deng, Synthesis of TiO2–polyaniline core–shell nanofibers and their unique UV photoresponse based on different photoconductive mechanisms in oxygen and non-oxygen environments, Chem. Commun., 49 (2013) 4676–4678.
  42. S.N. Tijare, M.V. Joshi, P.S. Padole, P.A. Mangrulkar, S.S. Rayalu, N.K. Labhsetwar, Photocatalytic hydrogen generation through water splitting on nano-crystalline LaFeO3 perovskite, Int. J. Hydrogen Energ., 7 (2012) 10451–10456.
  43. J. Hu, J. Ma, L. Wang, H. Huang, Synthesis and photocatalytic properties of LaMnO3–graphene nanocomposites, J. Alloy. Compd., 583 (2014) 539–545.
  44. T.W. Kim, M. Park, H.Y. Kim, S.J. Park, Preparation of flower- like TiO2 sphere/reduced graphene oxide composites for photocatalytic degradation of organic pollutants, J. Solid State Chem., 239 (2016) 91–98.
  45. G.L. He, Y.H. Zhong, M.J. Chen, Z. Li, Y.P. Fang, Y.H. Xu, Onepot hydrothermal synthesis of SrTiO3-reduced graphene oxide composites with enhanced photocatalytic activity for hydrogen production, J. Mol. Catal. A: Chem., 423 (2016) 70–76.
  46. J. Hu, J. Men, J. Ma, H. Huang, Preparation of LaMnO3/graphene thin films and their photocatalytic activity, J. Rare Earth, 32 (2014) 1126–1134.