1. M. Czaplicka, Sources and transformations of chlorophenols in the natural environment, Sci. Total Environ., 322 (2004) 21–39.
  2. E.O. Igbinosa, E.E. Odjadjare, V.N. Chigor, I.H. Igbinosa, A.O. Emoghene, F.O. Ekhaise, N.O. Igiehon, O.G. Idemudia, Toxicological profile of chlorophenols and their derivatives in the environment: the public health perspective, Sci. World J., 2013 (2013) 1–11.
  3. C. Moreno-Castilla, Adsorption of organic molecules from aqueous solutions on carbon materials, Carbon, 42 (2004) 83–94.
  4. A. Dąbrowski, P. Podkościelny, Z. Hubicki, M. Barczak, Adsorption of phenolic compounds by activated carbon - a critical review, Chemosphere, 58 (2005) 1049–1070.
  5. K.Y. Foo, B.H. Hameed, Detoxification of pesticide waste via activated carbon adsorption process, J. Hazard. Mater., 175 (2010) 1–11.
  6. M.L. Soto, A. Moure, H. Dominguez, J.C. Parajo, Recovery, concentration and purification of phenolic compounds by adsorption: a review, J. Food Eng., 105 (2011) 1–27.
  7. Q. Liao, J. Sun, L. Gao, Adsorption of chlorophenols by multiwalled carbon nanotubes treated with HNO3 and NH3, Carbon, 46 (2008) 544–561.
  8. G.C. Chen, X.Q. Shan, Y.S. Wang, B. Wen, Z.G. Pei, Y.N. Xie, T. Liu, J.J. Pignatello, Adsorption of 2,4,6-trichlorophenol by multi-walled carbon nanotubes as affected by Cu(II), Water Res., 43 (2009) 2409–2418.
  9. M. Abdel Salam, M. Mokhtar, S.N. Basahel, S.A. Al-Thabaiti, A.Y. Obaid, Removal of chlorophenol from aqueous solutions by multi-walled carbon nanotubes: kinetic and thermodynamic studies, J. Alloys Compd., 500 (2010) 87–92.
  10. V.A. Tóth, A. Törocsik, E. Tombácz, K. László, Competitive adsorption of phenol and 3-chlorophenol on purified MWCNTs, J. Colloid Interface Sci., 387 (2012) 244–249.
  11. S. Biniak, A. Świątkowski, M. Pakuła, M. Sankowska, K. Kuśmierek, G. Trykowski, Cyclic voltammetric and FTIR studies of powdered carbon electrodes in the electrosorption of 4-chlorophenols from aqueous electrolytes, Carbon, 51 (2013) 301–312.
  12. K. Kuśmierek, A. Świątkowski, The influence of an electrolyte on the adsorption of 4-chlorophenol onto activated carbon and multi-walled carbon nanotubes, Desal. Wat. Treat., 56 (2015) 2807–2816.
  13. H. Ding, X. Li, J. Wang, X. Zhang, C. Chen, Adsorption of chlorophenols from aqueous solutions by pristine and surface functionalized single-walled carbon nanotubes, J. Environ. Sci., 43 (2016) 187–198.
  14. C.L. Arthur, J. Pawliszyn, Solid phase microextraction with thermal desorption using fused silica optical fibers, Anal. Chem., 62 (1990) 2145–2148.
  15. J. Pawliszyn, Applications of Solid Phase Microextraction, The Royal Society of Chemistry, Cambridge, 1999.
  16. A. Kumar, A.K. Malik, D.K. Tewary, B. Singh, A review on development of solid phase microextraction fibers by sol-gel methods and their applications, Anal. Chim. Acta, 610 (2008) 1–14.
  17. F. Augusto, E. Carasek, R.G.C. Silva, S.R. Rivellino, A.D. Batista, E. Martendal, New sorbents for extraction and microextraction techniques, J. Chromatogr. A, 1217 (2010) 2533–2542.
  18. A.V. Herrera-Herrera, M.A. Gonzalez-Curbelo, J. Hernandez-Borges, M.A. Rodriguez-Delgado, Carbon nanotubes applications in separation science: a review, Anal. Chim. Acta, 734 (2012) 1–30.
  19. B. Pérez-López, A. Merkoçi, Carbon nanotubes and graphene in analytical sciences, Microchim. Acta, 179 (2012) 1–16.
  20. B.T. Zhang, X. Zheng, H.F. Li, J.M. Lin, Application of carbonbased nanomaterials in sample preparation: a review, Anal. Chim. Acta, 784 (2013) 1–17.
  21. R. Aranda, P. Kruus, R.C. Burk, Assessment of polycrystalline graphites as sorbents for solid-phase microextraction of nonionic surfactants, J. Chromatogr. A, 888 (2000) 35–41.
  22. M. Giardina, S.V. Olesik, Application of low-temperature glassy carbon-coated macrofibers for solid-phase microextraction analysis of simulated breath volatiles, Anal. Chem., 75 (2003) 1604–1614.
  23. T. Sun, J. Jia, N. Fang, Y. Wang, Application of novel activated carbon fiber solid-phase, microextraction to the analysis of chlorinated hydrocarbons in water by gas chromatographymass spectrometry, Anal. Chim. Acta, 530 (2005) 33–40.
  24. K. Kuśmierek, M. Sankowska, K. Skrzypczyńska, A. Świątkowski, The adsorptive properties of powdered carbon materials with a strongly differentiated porosity and their applications in electroanalysis and SPME-GC, J. Colloid Interface. Sci., 446 (2015) 91–97.
  25. J. Yu, L. Dong, C. Wu, L. Wu, J. Xing, Hydroxyfullerene as a novel coating for solid-phase microextraction fiber with sol-gel technology, J. Chromatogr. A, 978 (2002) 37–48.
  26. Q. Liu, J. Shi, L. Zeng, T. Wang, Y. Cai, G. Jiang, Evaluation of graphene as an advantageous adsorbent for solidphase extraction with chlorophenols as model analytes, J. Chromatogr. A, 1218 (2011) 197–204.
  27. Z. Pei, L. Li, L. Sun, S. Zhang, X.Q. Shan, S. Yang, B. Wen, Adsorption characteristics of 1,2,4-trichlorobenzene, 2,4,6-trichlorophenol, 2-naphthol and naphthalene on graphene and graphene oxide, Carbon, 51 (2013) 156–163.
  28. X. Liu, Y. Ji, Y. Zhang, H. Zhang, M. Liu, Oxidized multiwalled carbon nanotubes as a novel solid-phase microextraction fiber for determination of phenols in aqueous samples, J. Chromatogr. A, 1165 (2007) 10–17.
  29. H. Liu, J. Li, X. Liu, S. Jiang, A novel multiwalled carbon nanotubes bonded fused-silica fiber for solid phase microextraction-gas chromatographic analysis of phenols in water samples, Talanta, 78 (2009) 929–935.
  30. W. Du, F. Zhao, B. Zeng, Novel multiwalled carbon nanotubespolyaniline composite film coated platinum wire for headspace solid-phase microextraction and gas chromatographic deter mination of phenolic compounds, J. Chromatogr. A, 1216 (2009) 3751–3757.
  31. P. Kueseng, J. Pawliszyn, Carboxylated multiwalled carbon nanotubes/polydimethylsiloxane, a new coating for 96-blade solid-phase microextraction for determination of phenolic compounds in water, J. Chromatogr. A, 1317 (2013) 199–20.
  32. M.M. Dubinin, E.D. Zaverina, V.V. Serpinsky, The sorption of water vapour by active carbon, J. Chem. Soc., (1955) 1760–1766.
  33. S. Lagergren, Theorie der sogenannten adsorption geloester stoffe, Vetenskapsakad. Handl., 24 (1898) 1–39.
  34. Y.S. Ho, G. McKay, Pseudo-second-order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  35. W. Weber Jr., J.C. Morris, Kinetics of adsorption on carbon from solution, J. Sanit. Eng. Div., 18 (1963) 31–42.
  36. H.M.F. Freundlich, Über die adsorption in lösungen, Z. Phys. Chem., 57 (1906) 385–470.
  37. I. Langmuir, The constitution and fundamental properties of solids and liquids, J. Am. Chem. Soc., 38 (1916) 2221–2295.
  38. B. Pan, B. Xing, Adsorption mechanisms of organic chemicals on carbon nanotubes, Environ. Sci. Technol., 42 (2008) 9005–9013.
  39. W. Wardencki, M. Michulec, J. Curyło, A review of theoretical and practical aspects of solid-phase microextraction in food analysis, Int. J. Food Sci. Technol., 39 (2004) 703–717.
  40. N. Zhang, J. Xie, M. Guers, V.K. Varadan, Chemical bonding of multiwalled carbon nanotubes to polydimethylsiloxanes and modification of the photoinitiator system for microstereolithography processing, Smart Mater. Struct., 13 (2004) N1–N4.