1. A. Cipollina, C. Sommariva, G. Micale, Efficiency increase in thermal desalination plants by matching thermal and solar distillation: theoretical analysis, Desalination, 183 (2005) 127–136.
  2. P.I. Cooper, Digital simulation of transient solar still processes, Sol. Energy, 12 (1969) 313–331.
  3. A.A. El-Sebaii, Effect of wind speed on active and passive solar stills, Energy Convers. Manage., 45 (1999) 1187–1204.
  4. M.A. Hamdan., A.M. Musa, B.A. Jubran, Performance of solar still under Jordan climatic conditions, Energy Convers. Manage., 40 (1999) 495–503.
  5. H.S. Aybar, H. Assefi, Simulation of a solar still to investigate water depth and glass angle, Desal. Wat. Treat., 7 (2009) 35–40.
  6. A.J.N. Khalifa, A.M. Hamood, Experimental validation and enhancement of some solar still performance correlations, Desal. Wat. Treat., 4 (2009) 311–315.
  7. O.O. Badran, H.A. Al-Tahaineh, The effect of coupling a flatplate collector on the solar still productivity, Desalination, 183 (2005) 137–142.
  8. R. Tripathi, G.N. Tiwari, Thermal modeling of passive and active solar stills for different depths of water by using the concept of solar fraction, Sol. Energy, 80 (2006) 956–967.
  9. H. Al-Hinai, M.S. Al-Nassri, B.A. Jubran, Effect of climatic, design and operational parameters on the yield of a simple solar still, Energy Convers. Manage., 43 (2002) 1639–1650.
  10. M. Telkes, Improved Solar Stills’ Transactions of the Conference on the Use of Solar Energy: The Scientific Basis, Tuscon Arizona, Vol. 3 1955, pp. 145–153, Chapter 14, Part 2.
  11. OG. George, Solar Distillation of Sea Water in the Virgin Islands, United State Department of Interior, Office of Saline Water, Research and Development Progress Report No. 5, 1955, pp. 1–39.
  12. G.O.G. Lof, J.A. Eibling, J.W. Bloemer, Energy balances in solar distillers, AIChE J., 7 (1961) 641–649.
  13. R.N. Morse, W.R.W. Read, A rational basis for the engineering development of a solar still, Sol. Energy, 12 (1968) 5–17.
  14. G.N. Tiwari, A. Minocha, P.B. Sharma, M. Emran Khan, Simulation of convective mass transfer in a solar distillation process, Energy Convers. Manage., 38 (1997) 761–770.
  15. G.N. Tiwari, Md. Emran Khan, R.K. Goyal, Experimental study of evaporation in distillation, Desalination, 115 (1998) 121–128.
  16. R.S. Adhikari, A. Kumar, A. Kumar, Estimation of mass-transfer rates in solar stills, Int. J. Energy Res., 14 (1990) 737–744.
  17. M.K. Phadatare, S.K. Verma, Effect of cover materials on heat and mass transfer coefficients in a plastic solar still, Desal. Wat. Treat., 2 (2009) 248–253.
  18. H.Z. Yousef, K.A.-A. Mousa, Modelling and performance analysis of a regenerative solar desalination unit, Appl. Therm. Eng., 24 (2004) 1061–1072.
  19. S.K. Singh, G.N. Tiwari, Analytical expression for thermal efficiency of a passive solar still, Energy Convers. Manage., 32 (1991) 571–576.
  20. W.N. Grune, R.A. Collins, R.B. Hughes, T.L. Thompson, Development of Improved Solar Still, United State Department of Interior, Office of Saline Water, Research and Development Progress Report No. 60, March 1962.
  21. B.W. Tleimat, E.D. Howe, Nocturnal production of solar distillers, Sol Energy, 10 (1966) 61–66.
  22. M.A.S. Malik, V.V. Tran, Final Report on Nocturnal Production of Petit St. Vincent Solar Still Using an Alternative Heat Source, Brace Research Institute of McGill University, T.20, 1969.
  23. M.A.S. Malik, V.M. Puri, H. Aburshaid, Use of double stage solar still for nocturnal production, Proceedings of 6th International Symposium on Fish Water from Sea, 2 (1978) 367.
  24. S.O. Onyegegbu, Nocturnal distillation in basin-type solar stills, Appl. Energy, 24 (1986) 29–42.
  25. V.B. Sharma, S.C. Mullick, Estimation of heat-transfer coefficients, the upward heat flow, and evaporation in a solar still, ASME, J. Sol. Energy Eng., 113 (1991) 36–41.
  26. S. Kumar, S. Sinha, Transient model and comparative study of concentrator coupled regenerative solar still in forced circulation mode, Energy Convers Manage., 37 (1996) 629–636.
  27. E. Sartori, Solar still versus solar evaporator: a comparative study between their thermal behaviors, Sol. Energy, 56 (1996) 199–206.
  28. R.V. Dunkle, Solar Water Distillation; The Roof Type Solar Still and a Multi Effect Diffusion Still, International Developments in Heat Transfer, ASME, Proceedings in International Heat Transfer, Part V, University of Colorado, 1661, p. 895.
  29. S. Kumar, G.N. Tiwari, Estimation of convective mass transfer in solar distillation systems, Sol. Energy, 57 (1996) 459–464.
  30. A.Kr. Tiwari, G.N. Tiwari, Effect of the condensing cover’s slope on internal heat and mass transfer in distillation: an indoor simulation, Desalination, 180 (2005) 73–78.
  31. S. Kumar, G.N. Tiwari, Estimation of internal heat transfer coefficients of a hybrid (PV/T) active solar Still, Sol. Energy, 83 (2009) 1656–1667.
  32. N. Rahbara, A. Asadi, E. Fotouhi-Bafghi, Performance evaluation of two solar stills of different geometries: tubular versus triangular: experimental study, numerical simulation, and second law analysis, Desalination, 443 (2018) 44–55.
  33. S. Nazari, H. Safarzadeh, M. Bahiraei, Performance improvement of a single slope solar still by employing thermoelectric cooling channel and copper oxide nanofluid: an experimental study, J. Cleaner Prod., 208 (2019) 1041–1052.
  34. J. Murphy, J.P. Riley, The storage of sea-water samples for the determination of dissolved inorganic phosphate, Anal. Chim. Acta, 14 (1956) 318–319.