References
  -  P.B. Tchounwou, C.G. Yedjou, A.K. Patlolla, D.J. Sutton, Heavy
    Metals Toxicity and the Environment, EXS, 101 (2012) 133–164. 
-  K. Chojnacka, A. Chojnacki, H. Gorecka, Trace element removal
    by Spirulina sp. from copper smelter and refinery effluents,
    Hydrometallurgy, 73 (2004) 147–153. 
-  M. Choudhary, U.K. Jetley, M.A. Khan, S. Zutshi, T. Fatma,
    Effect of heavy metal stress on proline, malondialdehyde, and
    superoxide dismutase activity in the cyanobacterium Spirulina
    platensis-S5, Ecotoxicol, Environ. Saf., 66 (2007) 204–209. 
-  A.R. Suyama, N. Iwakin, K.A. Nishi, K. Nakamhra, K. Furakawa,
    Engineering hybrid Pseudomonas capable of utilizing a wide
    range of aromatic hydrocarbons and of efficient degradation of
    trichloroethylene, J. Bacterial., 178 (1996) 4039–4046. 
-  T. Kuritz, C.P. Wolk, Use of cyanobacterial for biodegradation
    of aromatic pollutants, Appl. Environ. Microbiol., 61 (1995)
    238–243. 
-  S. Manzetti, E.R. van der Spoel, D. van der Spoel, Chemical
    properties, environmental fate, and degradation of seven
    classes of pollutants, Chem. Res. Toxicol., 27 (2014) 713–737. 
-  R. Dixit, Wasiullah, D. Malaviya, K. Pandiyan, U.B. Singh,
    A. Sahu, R. Shukla, B.P. Singh, J.P. Rai, P.K. Sharma, H.
    Lade, D. Paul, Bioremediation of heavy metals from soil and
    aquatic environment: an overview of principles and criteria of
    fundamental processes, Sustainability, 7 (2015) 2189–2212. 
-  A. Ahmad, A H. Bhat, A. Buang, S.M.U. Shah, M. Afzal,
    Biotechnological application of microalgae for integrated palm
    oil mill effluent (POME) remediation: a review, Int. J. Environ.
    Sci. Technol., 16 (2019) 1763–1788. 
-  J.G. Lebkuecher, E.N. Tuttle, J.L. Johnson, N.K.S. Willis, Use of
    algae to assess the trophic state of a stream in Middle Tennessee,
    J. Freshwater. Ecol., 30 (2015) 349–376. 
-  E. Pinto, T.C.S. Sigaud-Kutner, M.A.S. Leituao, O.K. Oramoto,
    D. Morse, P. Colepicolo, Review: heavy metal-induced oxidative
    stress in algae, J. Phycol., 39 (2003) 1008–1018. 
-  A.M. Zakaria, Removal of cadmium and manganese by a nontoxic
    strain of the freshwater cyanobacterium Gloeothece magna,
    Wat. Res., 35 (2001) 4405–4409. 
-  J.M. Pena-Castro, F. Martinez-Jeronimo, F.E. Sparza-Garcia,
    K.O. Canizares-Villanveva, Heavy metals removal by the
    microalgae Scenedesmus incrassatulus in continuous cultures,
    Bioresour. Technol., 94 (2004) 219–222. 
-  O. Keskinkana, M.Z.L. Goksub, A. Yuceera, M. Basibuyuka, C.F.
    Forster, Heavy metal adsorption characteristics of a submerged
    aquatic plant (Myriophyllum spicatum),. Process Biochem., 39
    (2003) 179–183. 
-  A. Kulshreshtha, R. Agrawal, M. Barar, S. Saxena, Review on
    bioremediation of heavy metals in contaminated water, IOSR J
    Environ. Sci. Toxicol. Food Technol., 8 (2014) 44–50. 
-  N.F. Tam, J.P. Wong, Y.S. Wong, Repeated use of two chlorella
    species, C. vulgaris and WWI for cyclic nickel biosorption,
    Environ. Pollut., 114 (2001) 85–92. 
-  C.A. Mahan, V. Majidi, J.A. Holcombe, Evaluation of the metal
    uptake of several algae strains in a multi component matrix
    utilizing inductively coupled plasma emission spectrometry,
    Anal. Chem., 15 (1989) 624–631. 
-  P.R. Pascucci, A.D. Kowalak, Public health benefits of using
    algae for simultaneous multiple metal extraction from waters,
    Rev. Environ. Health., 11 (1996) 205–211. 
-  P. Kaewsarn, Q. Yu, Cadmium (II) removal from aqueous
    solutions by pre-treated biomass of marine algae Padina sp,
    Environ. Pollut., 112 (2001) 209–213. 
-  D. Naghipour, K. Taghavi, J. Jaafari,Y. Mahdavi,
    M.G. Ghozikali, R. Ameri, A. Jamshidi, A.H. Mahvi, Statistical
    modeling and optimization of the phosphorus biosorption by
    modified Lemna minor from aqueous solution using response
    surface methodology (RSM), Desal. Wat. Treat., 57 (2016)
    19431–19442. 
-  G.H. Safari, M. Zarrabi, M. Hoseini, H. Kamani, J. Jaafari,
    A.H. Mahvi, Trends of natural and acid-engineered pumice
    onto phosphorus ions in aquatic environment: adsorbent
    preparation, characterization, and kinetic and equilibrium
    modeling, Desal. Wat. Treat., 54 (2015) 3031–3043. 
-  S.L. Corder, M. Reeves, Biosorption of nickel in complex
    aqueous waste streams by cyanobacteria. Appl. Biochem.
    Biotechnol., 45–46 (1994) 847–859. 
-  J.N. Veenstra, D. Sanders, S. Ahn, Impact of chromium and
    copper on fixed film biological systems, J. Environ. Eng., 125
    (1999) 522–531. 
-  P. Volesky, I. Prasetyo, Cadmium removal in a biosorption
    column, Biotechnol. Bioeng., 43 (1994) 1010–1015. 
-  E. Valdman, L. Erijman, F.L.P. Passoa, S.G.F. Leite, Continuous
    biosorption of Cu and Zn by immobilized waste biomass
    Sargassum sp, Process. Biochem., 36 (2001) 869–873. 
-  G. Yan, T. Viraraghavan, Heavy metal removal in a biosorption
    column by immobilized M. rouxii biomass, Biores. Technol., 78
    (2001) 243–249. 
-  P. Kaewsarn, Biosorption of copper (II) from aqueous solutions
    by pre- treated biomass of marine algae Padina sp, Chemosphere,
    47 (2002) 1081–1085. 
-  A. Ahmad, A.H. Bhat, A. Buang, Immobilized Chlorella vulgaris for efficient palm oil mill effluent treatment and heavy metals
    removal, Desal. Wat. Treat., 81 (2017) 105–117. 
-  A. Ahmada, A.H. Bhatb, A. Buanga, Biosorption of transition
    metals by freely suspended and Ca-alginate immobilized with
    Chlorella vulgaris: kinetic and equilibrium modeling, J. Cleaner
    Prod., 171 (2018) 1361–1375. 
-  A. Ahmad, A.H. Bhat, A. Buang, Enhanced biosorption of
    transition metals by living Chlorella vulgaris immobilized in
    Ca-alginate beads, J. Environ. Technol., 1 (2018) 1–17. 
-  B. Volesky, J. Weber, J.M. Park, Continuous flow metal
    biosorption in a regenerable Sargassum column, Wat. Res., 37
    (2003) 297–306. 
-  C. Sorakin, Growth Measurements. Division rate, in R.S Stein
    (Ed). Handbook of Physiological Methods, Culture Methods
    and Growth Measurement. Cambridge Univ. Press, Cambridge.
    202 (1979) 321–343. 
-  L. Clesceri, A Greenberg, A. Eaton,. Standard methods for
    the examination of water and wastewater, 20th ed., American
    Public Health Association (APHA), American Water Work
    Association (AWWA), Water Environment Federation (WEF),
    Washington, D.C. 1999. 
-  V.I. Grandova, S.N. Gromdev, A.S. Doycheva, Bioremediation
    of waters contaminated with crude oil and toxic heavy metals,
    Int. J. Miner Process., 62 (2001) 293–299. 
-  A.A. Ansari, S.S.G.R. Gill, G.R.L.L. Newman (Eds),
    Phytoremediation Management of Environmental
    Contaminants, Springer International Publishing, Switzerland,
    3 (2016) 29–208. ISBN 978–3–319–40146–1, ISBN 978–3–319–
    40148–5 (eBook). 
-  C.J. Tien, Biosortion of metal ions by freshwater algae with
    different surface characteristics, Process Biochem., 38 (2002)
    605–613. 
-  M.M. El-Sheekh, W.A. E-Shouny, M.E.H. Osman, E.W.E.
    El-Gammal, Growth and heavy metals removal efficiency of
    Nostoc muscorum and Anabaena subcylindrica in sewage and
    industrial wastewater effluents, Environ. Toxicol. Pharmacol.,
    19 (2005) 357–365. 
-  M. Das. A. Adholeya, Potential Uses of Immobilized Bacteria,
    Fungi, Algae, and Their Aggregates for Treatment of Organic
    and Inorganic Pollutants in Wastewater. In: Water Challenges
    and Solutions on a Global Scale, S. Ahuja, J.B. de Andrade,
    D.D. Dionysiou, K.D. Hristovski and B.G. Loganathan (eds).
    Chapter 15 (2015) 319–337, American Chemical Society (ACS)
    Symposium Series, Vol. 1206. 
-  C.M. Martins, L.M.C.G. Fiúza, S.T. Sandra, T. Santaella,
    Immobilization of microbial cells: a promising tool for treatment
    of toxic pollutants in industrial wastewater, Review. African J.
    Biotech., 12 (2013) 4412–4418. 
-  O.J. Iye, Bioremediation of heavy metal polluted water using
    immobilized freshwater green microalga, Botryococcus sp.
    (2015), MSc., Faculty of Science, Technology and Human
    Development, University of Tun Hussein Onn, Malaysia. 
-  S.M. Selimoglu, M. Elibol, Alginate as an immobilization
    material for MAb production via encapsulated hybridoma cells,
    J. Crit. Rev. Biotech., 30 (2010) 145–159. 
-  C.L. Soo, C.A. Chen, O. Bojo, Y.S. Hii, Feasibility of marine
    microalgae immobilization in alginate bead for marine
    water treatment: bead stability, cell growth, and ammonia
    removal, Int J Polym. Sci., (2017): Article ID 6951212, 7 pages
    DOI: org/10.1155/2017/6951212 (2017). 
-  A. Tsygankov, S. Kosourov, Immobilization of Photosynthetic
    Microorganisms for Efficient Hydrogen Production. In: Zannoni
    D, De Philippis R (eds) Microbial Bio-Energy: Hydrogen
    Production. Advances in Photosynthesis and Respiration
    (Including Bioenergy and Related Processes). Vol. 38 (2014)
    Springer, Dordrecht 
-  A. Blanco, B. Sanz, M.J. Llama, J.L. Serra, Biosorption of heavy
    metals to immobilized Phormidium laminosum biomass,J.
    Biotechnol., 69 (1999) 227–240. 
-  S.P. Singh, V. Yadava, Cadmium uptake in Anacystis nidulans:
    effect of modifying factors, J Gen. Appl. Microbiol., 33(1985)
    39–48. 
-  Z. Chen, L. Ren, Q. Shao, D. Shi, B. Ru, Expression of mammalian
    metallothionein-I gene in cyanobacteria to enhance heavy metal
    resistance, Mar. Poll. Bull., 39 (1999) 155–158. 
-  I. Moreno-Garrido, O. Campana, L.M. Lubián, J. Blasco,
    Calcium alginate immobilized marine microalgae: experiments
    on growth and short-term heavy metal accumulation, Mar. Poll.
    Bull., 51 (2005) 823–829. 
-  K. Vijayaraghavan, J. Jegan, K. Palanivelu, M. Velan, Biosorption
    of copper, cobalt and nickel by marine green alga Ulva reticulate in a packed column, Chemosphere., 60 (2005) 419–426. 
-  S. Szabo, M. Braun, G. Borics, Elemental flux between algae and
    duckweeds (Lemna gibba) during competition, Arch. Hydrobiol.,
    149 (1999) 355–367. 
-  Q. Shao, D. JiShi, F. Ying-Hao, L. Na Ma, J.Z. Chen, M. MinYu,
    B. Gen RU, Cloning and expression of metallothionein mutant
    α-KKS-α in Anabaena sp. PCC 7120, Mar. Pollut. Bull., 45 (2002)
    163–167. 
-   W. Maznah, A.T.
    Al-Fawwaz, M. Surif, Biosorption of copper and zinc by
    immobilized and free algal biomass, and the effects of metal
    biosorption on the growth and cellular structure of Chlorella sp.
    and Clamydomonas sp. isolated from rivers in Penang, Malaysia.
    J. Environ. Sci., 24(8) (2012) 1386–1393. 
-  A.K.J. Sallal, Growth of algae and cyanobacteria on sewage
    effluents, Microb. Lett., 20 (1982) 7–13. 
-  S. Kanchana, J. Jeyanthi, R. Kathiravan, K. Suganya, Biosorption
    of heavy metals using algae: a review, Int. J. Pharm. Med. 
    Biol. Sci., 3 (2014) 9.