1. F.A. Santos, L. Alban, C.L.C. Frankenberg, M. Pires, Characterization and use of biosorbents prepared from forestry waste and their washed extracts to reduce/remove chromium, Int. J. Environ. Sci. Technol., 13 (2016) 327–338.
  2. F.A. Santos, M. Idrees, M. Silva, P.H.E. de Lima, N. Bueno, F. Nome, H.D. Fiedler, M. Pires, Cr(III) biosorption by forest wastes from Araucaria angustifolia and Pinus elliottii: biosorbent surface characterization and chromium quantification by spectrofluorimetry in micellar medium, Desal. Wat. Treat., 51 (2013) 5617–5626.
  3. D. Park, Y.S. Yun, J.M. Park, The past, present, and future trends of biosorption, Biotechnol. Bioprocess Eng., 15 (2010) 86–102.
  4. J.C.P. Vaghetti, E.C. Lima, B. Royer, J.L. Brasil, B.M. da Cunha, N.M. Simon, N.F. Cardoso, C.P.Z. Noreña, Application of Brazilian-pine fruit coat as a biosorbent to removal of Cr(VI) from aqueous solution-kinetics and equilibrium study, Biochem. Eng. J., 42 (2008) 67–76.
  5. K.K. Krishnani, X. Meng, C. Christodoulatos, V.M. Boddu, Biosorption mechanism of nine different heavy metals onto biomatrix from rice husk, J. Hazard. Mater., 153 (2008) 1222–1234.
  6. B. Singha, S.K. Das, Biosorption of Cr(VI) ions from aqueous solutions: kinetics, equilibrium, thermodynamics and desorption studies, Colloids Surf., B, 84 (2011) 221–232.
  7. S. Nag, A. Mondal, N. Bar, S.K. Das, Biosorption of chromium (VI) from aqueous solutions and ANN modelling, Environ. Sci. Pollut. Res., 24 (2017) 18817–18835.
  8. A.K. Panda, R.K. Singh, D.K. Mishra, Thermolysis of waste plastics to liquid fuel: a suitable method for plastic waste management and manufacture of value added products — a world prospective, Renewable Sustainable Energy Rev., 14 (2010) 233–248.
  9. A.K. Bhattacharya, T.K. Naiya, S.N. Mandal, S.K. Das, Adsorption, kinetics and equilibrium studies on removal of Cr(VI) from aqueous solutions using different low-cost adsorbents, Chem. Eng. J., 137 (2008) 529–541.
  10. F.A. dos Santos, M.J.R. Pires, M. Cantelli, Treatment of effluent from galvanoplasty by biosorption of chromium and iron with cone scales from the araucaria angustifolia, Rev. Esc. Minas, 64 (2011) 499–504.
  11. D. Park, Y.-S. Yun, J.H. Jo, J.M. Park, Biosorption process for treatment of electroplating wastewater containing Cr(VI): laboratory-scale feasibility test, Ind. Eng. Chem. Res., 45 (2006) 5059–5065.
  12. I.S. Bădescu, D. Bulgariu, I. Ahmad, L. Bulgariu, Valorisation possibilities of exhausted biosorbents loaded with metal ions – a review, J. Environ. Manage., 224 (2018) 288–297.
  13. S. Lata, P.K. Singh, S.R. Samadder, P.K. Singh, S.R. Samadder, Regeneration of adsorbents and recovery of heavy metals: a review, Int. J. Environ. Sci. Technol., 12 (2015) 1461–1478.
  14. P. Staroń, Z. Kowalski, A. Staroń, M. Banach, Thermal treatment of waste from the meat industry in high scale rotary kiln, Int. J. Environ. Sci. Technol., 14 (2017) 1157–1168.
  15. S.V. Vassilev, D. Baxter, C.G. Vassileva, An overview of the behaviour of biomass during combustion: Part II. Ash fusion and ash formation mechanisms of biomass types, Fuel, 117 (2014) 152–183.
  16. A. Dettmer, K. Guerra, P. Nunes, M. Gutterres, N.R. Marcílio, Production of basic chromium sulfate by using recovered chromium from ashes of thermally treated leather, J. Hazard. Mater., 176 (2010) 710–714.
  17. J. Torras, I. Buj, M. Rovira, J. de Pablo, Chromium recovery from exhausted baths generated in plating processes and its reuse in the tanning industry, J. Hazard. Mater., 209–210 (2012) 343–347.
  18. M.A. Abreu, S.M. Toffoli, Characterization of a chromium-rich tannery waste and its potential use in ceramics, Ceram. Int., 35 (2009) 2225–2234.
  19. S.V. Vassilev, D. Baxter, L.K. Andersen, C.G. Vassileva, An overview of the composition and application of biomass ash. Part 1. Phase-mineral and chemical composition and classification, Fuel, 105 (2013) 40–76.
  20. A. Dettmer, K.G.P. Nunes, M. Gutterres, N.R. Marcílio, Obtaining sodium chromate from ash produced by thermal treatment of leather wastes, Chem. Eng. J., 160 (2010) 8–12.
  21. A. Ronda, M. Della Zassa, M.A. Martín-Lara, M. Calero, P. Canu, Combustion of a Pb(II)-loaded olive tree pruning used as biosorbent, J. Hazard. Mater., 308 (2016) 285–293.
  22. M.A. Martín-Lara, G. Bl Azquez, A. Ronda, M. Calero, Kinetic study of the pyrolysis of pine cone shell through non-isothermal thermogravimetry: effect of heavy metals incorporated by biosorption, Renewable Energy, 96 (2016) 613–624.
  23. F.A. Santos, Performance and Conformity Biosorbents Produced from Forest Residues and its Application in Chromium Treatment of Electroplating Industrial Effluent, Thesis, Post-Graduation Program in Materials Engineering and Technology Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil, 2013.
  24. ABNT - Brazilian Association for Technical Standards, ABNT NBR 10005:2004 Procedure for Obtention Leaching Extract of Solid Wastes, 2004.
  25. ABNT - Brazilian Association for Technical Standards, ABNT NBR 10664:1989 Waters - Determination of Residues (Solids) - Gravimetric Method, 1989.
  26. ABNT - Brazilian Association for Technical Standards, ABNT NBR 13738:1996 Water - Hexavalent Chromium Determination - Diphenylcarbazide Colorimetric Method, 1996.
  27. APHA, Standard Methods for Examination of Water and Wastewater, Am. Public Heal. Assoc., Washington, DC, USA, 2012.
  28. CONAMA, National Council of Environment. Resolution CONAMA 430/2011, Effluent Release Conditions and Standards, Brasilia, Brazil, 2011.
  29. G. Blázquez García, M. Calero De Hoces, C. Martínez García, M. Teresa, C. Palomino, A.R. Gálvez, M. Ángeles Martín-Lara, Characterization and modeling of pyrolysis of the two-phase olive mill solid waste, Fuel Process. Technol., 126 (2014) 104–111.
  30. V.P. Della, J.A. Junkes1, I. Kuhn, H.G. Hiella, D. Hotza, By-product utilization of metallic recovering of stainless steel slags in the ceramic pigments synthesis; raw material characterization, Cerâmica, 51 (2005) 111–116.
  31. M.A. Abreu, By-product utilization of metallic recovering of stainless steel slags in the ceramic pigments synthesis; raw material characterization, Thesis, Sao Paulo University, 2006.
  32. B. Günther, R. Barkowski, M. Rosenthal, K. Gebauer, C.-T. Bues, Calorific value of selected wood species and wood products, Eur. J. Wood Prod, 70 (2012) 755–757.
  33. S.U. Patel, B. Jeevan Kumar, Y.P. Badhe, B.K. Sharma, S. Saha, S. Biswas, A. Chaudhury, S.S. Tambe, B.D. Kulkarni, Estimation of gross calorific value of coals using artificial neural networks, Fuel, 86 (2007) 334–344.