1. M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Mariñas, A.M. Mayes, Science and technology for water purification in the coming decades, Nature, 452 (2008) 301–310.
  2. M. Elimelech, W.A. Phillip, The future of sweater desalination: energy, technology and the environment, Science, 333 (2011) 712–717.
  3. A.D. Khawaji, I.K. Kutubkhanah, J.-M. Wie, Advances in seawater desalination technologies, Desalination, 221 (2008) 47–69.
  4. S. Daer, J. Kharraz, A. Giwa, S.W. Hasan, Recent applications of nanomaterials in water desalination: a critical review and future opportunities, Desalination, 367 (2015) 37–48.
  5. T. Humplik, J. Lee, S.C.O’Hern, B.A. Fellman, M.A. Baig, S.F. Hassan, M.A. Atieh, F. Rahman, T. Laoui, R. Karnik, E.N. Wang, Nanostructured materials for water desalination, Nanotechnology, 22 (2011) 292001–1–20.
  6. F. Perreault, A.F. de Faria, M. Elimelech, Environmental applications of graphene-based nanomaterials, Chem. Soc. Rev., 44 (2015) 5861–5896.
  7. D. Chohen-Tanugi, J.C. Grossman, Mechanical strength of nanoporous graphene as a desalination membrane, Nano Lett., 14 (2014) 6171–6178.
  8. L.F. Greenlee, D.F. Lawler, B.D. Freeman, B. Marrot, P. Moulin, Reverse osmosis desalination: water sources, technology, and today’s challenges, Water Res., 43 (2009) 2317–2348.
  9. S. Porada, R. Zhao, A. Van der Wal, V. Presser, P. Biesheuvel, Review on the science and technology of water desalination by capacitive deionization, Prog. Mater Sci., 58 (2013) 1388–1442.
  10. M.E. Suss, S. Porada, X. Sun, P.M. Biesheuvel, J. Yoon, V. Presser, Water desalination via capacitive deionization: what is it and what can we expect from it?, Energy Environ. Sci., 8 (2015) 2296–2319.
  11. X. Gao, S. Porada, A. Omosebi, K.-L. Liu, P.M. Biesheuvel, J. Landon, Complementary surface charge for enhanced capacitive deionization, Water Res., 92 (2016) 275–282.
  12. M. Qin, A. Deshmukh, R. Epztein, S.K. Patel, O.M. Owoseni, W.S. Walker, M. Elimelech, Comparison of energy consumption in desalination by capacitive deionization and reverse osmosis, Desalination, 455 (2019) 100–114.
  13. M.A. Anderson, A.L. Cudero, J. Palma, Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: will it compete?, Electrochim. Acta, 55 (2010) 3845–3856.
  14. B. Jia, L. Zou, Wettability and its influence on graphene nansoheets as electrode material for capacitive deionization, Chem. Phys. Lett., 548 (2012) 23–28.
  15. S. Yamaguchi, Nanoionics-Present and future prospects, Sci. Technol. Adv. Mater., 8 (2007) 503–503.
  16. A.G. El-Deen, R.M. Boom, H.Y. Kim, H. Duan, M.B. Chan-Park, J.-H. Choi, Flexible 3D nanoporous graphene for desalination and bio-decontamination of brackish water via asymmetric capacitive deionization, ACS Appl. Mater. Interfaces, 8 (2016) 25313–25325.
  17. V. Chabot, D. Higgins, A. Yu, X. Xiao, Z. Chen, J. Zhang, A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment, Energy Environ. Sci., 7 (2014) 1564–1596.
  18. C. Tsouris, R. Mayes, J. Kiggans, K. Sharma, S. Yiacoumi, D. DePaoli, S. Dai, Mesoporous carbon for capacitive deionization of saline water, Environ. Sci. Technol., 45 (2011) 10243–10249.
  19. S. Porada, L. Weinstein, R. Dash, A. Van der Wal, M. Bryjak, Y. Gogotsi, P.M. Biesheuvel, Water desalination using capacitive deionization with microporous carbon electrodes, ACS Appl. Mater. Interfaces, 4 (2012) 1194–1199.
  20. X. Xu, Z. Sun, D.H.C. Chua, L. Pan, Novel nitrogen doped graphene sponge with ultrahigh capacitive deionization performance, Sci. Rep., 5 (2015) 11225.
  21. P. Xu, J. Yang, K. Wang, Z. Zhou, P. Shen, Porous graphene: properties, preparation and potential applications, Chin. Sci. Bull., 57 (2012) 2948–2955.
  22. S.P. Koenig, L. Wang, J. Pellegrino, J.S. Bunch, Selective molecular sieving through porous graphene, Nat. Nanotechnol., 7 (2012) 728–732.
  23. S. Gupta, R. Meek, B. Evans, N. Dimakis, Graphene-based “hybrid” aerogels with carbon nanotubes: Mesoporous network– functionality promoted defect density and electrochemical activity correlations, J. Appl. Phys., 124 (2018) 124304–1–15.
  24. Water quality Determination of electrical conductivity, International standard ISO 7888 ; EPA method number 310.1, 1985.
  25. J. Xu, Y. Lin, J.W. Connell, L. Dai, Nitrogen‐doped holey graphene as an anode for lithium‐ion batteries with high volumetric energy density and long cycle life, Small., 11 (2015) 6179–6185.
  26. S. Gupta, A. Saxena, Nanocarbon materials: probing the curvature and topology effects using phonon spectra, J. Raman Spectrosc., 40 (2009) 1127–1137.
  27. M.S. Dresselhaus, A. Jorio, R. Saito, Characterizing Graphene, Graphite, and carbon nanotubes by Raman spectroscopy, Annu. Rev. Condens. Matter Phys., 1 (2010) 89–108.
  28. S. Gupta, E. Heintzman, J. Jasinski, Multiphonon Raman spectroscopy properties and Raman mapping of 2D van der Waals solids: graphene and beyond, J. Raman Spectrosc., 46 (2015) 217–230.
  29. F. Tunistra, J.L. Koenig, Raman spectrum of graphite, J. Chem. Phys., 53 (1970) 1126–1130.
  30. A. Jorio, M.M. Lucchese, F. Stavale, E.H.M. Ferreira, M.V.O. Moutinho, R.B. Capaz, C.A. Achete, Raman study of ioninduced defects in N-layer graphene, J. Phys.: Condens. Matter, 22 (2010) 334204–1–5.
  31. L.G. Conçado, A. Jorio, E.H.M. Ferreira, F. Stavale, C.A. Achete, R.B. Capaz, M.V.O. Moutinho, A. Lombardo, T.S. Kulmala, A.C. Ferrari, Quantifying defects in graphene via Raman spectroscopy at different excitation energies, Nano Lett., 11 (2011) 3190–3196.
  32. A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S.K. Saha, U.V. Waghmare, K. Novoselov, H.R. Krishnamurthy, A.K. Geim, A.C. Ferrari, A.K. Sood, Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor, Nat. Nanotechnol., 3 (2008) 210–215.
  33. E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications; Kluwer Academic/Plenum, New York, USA, 1999.
  34. S. Gupta, T. Smith, A. Banaszak, J. Boeckl, Graphene quantum dots electrochemistry and sensitive electrocatalytic glucose sensor development, Nanomaterials, 7 (2017) 301–1–20.
  35. A.S. Yasin, M. Obaid, I.M.A. Mohamed, A. Yousef, N.A.M. Barakat, ZrO2 nanofibers/activated carbon composite as a novel and effective electrode material for the enhancement of capacitive deionization performance, RSC Adv., 7 (2017) 4616–4626.
  36. H. Li, L. Zou, L. Pan, Z. Sun, Novel graphene-like electrodes for capacitive deionization, Environ. Sci. technol., 44 (2010) 8692–8697.
  37. N.L. Ritzert, J. Rodriguez-Lopex, C. Tan, H.D. Abruňa, Kinetics of interfacial electron transfer at single-layer graphene electrodes in aqueous and non-aqueous solutions, Langmuir, 29 (2013) 1683–1694.
  38. L. Heller, J. Kong, K.A. Williams, C. Dekker, S.G. Lemay, Electrochemistry at single-walled carbon nanotubes: the role of band structure and quantum capacitance, J. Am. Chem. Soc., 128 (2006) 7353–7359.
  39. S. Gupta, N. Dimakis, Computational predictions of electronic properties of graphene with defects, adsorbed transition metaloxides and water using density functional theory, Appl. Surf. Sci., 465 (2019) 760–772.