References

  1. E.B. Ledesma, M.A. Kalish, P.F. Nelson, M.J. Wornat, J.C. Mackie, Formation and fate of PAH during the pyrolysis and fuel-rich combustion of coal primary tar, Fuel, 79 (2000) 1801–1814.
  2. H.I. Abdel-Shafy, M.S.M. Mansour, A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation, Egypt. J. Pet., 25 (2016) 107–123.
  3. K.-H. Kim, S.A. Jahan, E. Kabir, R.J.C. Brown, A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects, Environ. Int., 60 (2013) 71–80.
  4. N.-D. Dat, M.B. Chang, Review on characteristics of PAHs in atmosphere, anthropogenic sources and control technologies, Sci. Total Environ., 609 (2017) 682–693.
  5. A.M. Mastral, M.S. Callén, A Review on Polycyclic Aromatic Hydrocarbon (PAH) Emissions from Energy Generation, Environ. Sci. Technol., 34 (2000) 3051–3057.
  6. N. Mukwevho, E. Fosso-Kankeu, F. Waanders, N. Kumar, S.S. Ray, X.Y. Mbianda, Photocatalytic activity of Gd2O2CO3·ZnO·CuO nanocomposite used for the degradation of phenanthrene, SN Appl. Sci., 1 (2018) 10.
  7. A. Lair, C. Ferronato, J.-M. Chovelon, J.-M. Herrmann, Naphthalene degradation in water by heterogeneous photocatalysis: An investigation of the influence of inorganic anions, J. Photochem. Photobiol., A, 193 (2008) 193–203.
  8. N. Kumar, L. Reddy, V. Parashar, J.C. Ngila, Controlled synthesis of microsheets of ZnAl layered double hydroxides hexagonal nanoplates for efficient removal of Cr(VI) ions and anionic dye from water, J. Environ. Chem. Eng., 5 (2017) 1718–1731.
  9. N. Kumar, H. Mittal, S.M. Alhassan, S.S. Ray, Bionanocomposite hydrogel for the adsorption of dye and reusability of generated waste for the photodegradation of ciprofloxacin: a demonstration of the circularity concept for water purification, ACS Sustainable Chem. Eng., 6 (2018) 17011–17025.
  10. M. Farhadian, P. Sangpour, G. Hosseinzadeh, Preparation and photocatalytic activity of WO3–MWCNT nanocomposite for degradation of naphthalene under visible light irradiation, RSC Adv., 6 (2016) 39063–39073.
  11. S. Shin, O. Shardt, P.B. Warren, H.A. Stone, Membraneless water filtration using CO2, Nat. Commun., 8 (2017) 15181.
  12. N. Kumar, H. Mittal, V. Parashar, S.S. Ray, J.C. Ngila, Efficient removal of rhodamine 6G dye from aqueous solution using nickel sulphide incorporated polyacrylamide grafted gum karaya bionanocomposite hydrogel, RSC Adv., 6 (2016) 21929–21939.
  13. A.G. Fane, R. Wang, M.X. Hu, Synthetic membranes for water purification: status and future, Angew. Chem. Int. Ed., 54 (2015) 3368–3386.
  14. A. Lee, J.W. Elam, S.B. Darling, Membrane materials for water purification: design, development, and application, Environ. Sci. Water Res. Technol., 2 (2016) 17–42.
  15. K. Eryuruk, U. Tezcan Un, U. Bakır Ogutveren, Electrochemical treatment of wastewaters from poultry slaughtering and processing by using iron electrodes, J. Cleaner Prod., 172 (2018) 1089–1095.
  16. B. Khemila, B. Merzouk, A. Chouder, R. Zidelkhir, J.-P. Leclerc, F. Lapicque, Removal of a textile dye using photovoltaic electrocoagulation, Sustainable Chem. Pharm., 7 (2018) 27–35.
  17. E. Fosso-Kankeu, A.F. Mulaba-Bafubiandi, B.B. Mamba, T.G. Barnard, Prediction of metal-adsorption behaviour in the remediation of water contamination using indigenous microorganisms, J. Environ. Manage., 92 (2011) 2786–2793.
  18. H. Mittal, E. Fosso-Kankeu, S.B. Mishra, A.K. Mishra, Biosorption potential of Gum ghatti-g-poly (acrylic acid) and susceptibility to biodegradation by B. subtilis, Int. J. Biol. Macromol., 62 (2013) 370–378.
  19. E. Fosso-Kankeu, H. Mittal, S.B. Mishra, A.K. Mishra, Gum ghatti and acrylic acid based biodegradable hydrogels for the effective adsorption of cationic dyes, J. Ind. Eng. Chem., 22 (2015) 171–178.
  20. E. Fosso-Kankeu, H. Mittal, F. Waanders, I.O. Ntwampe, S.S. Ray, Preparation and characterization of gum karaya hydrogel nanocomposite flocculant for metal ions removal from mine effluents, Int. J. Environ. Sci. Technol., 13 (2016) 711–724.
  21. E. Fosso-Kankeu, H. Mittal, F. Waanders, S.S. Ray, Thermodynamic properties and adsorption behaviour of hydrogel nanocomposites for cadmium removal from mine effluents, J. Ind. Eng. Chem., 48 (2017) 151–161.
  22. W. Zhang, X. Li, Q. Zhao, Y. Hou, Y. Shen, G. Chen, Uniform α-Fe2O3 nanotubes fabricated for adsorption and photocatalytic oxidation of naphthalene, Mater. Chem. Phys., 129 (2011) 683–687.
  23. E.H. Umukoro, N. Kumar, J.C. Ngila, O.A. Arotiba, Expanded graphite supported p-n MoS2-SnO22 heterojunction nanocomposite electrode for enhanced photo-electrocatalytic degradation of a pharmaceutical pollutant, J. Electroanal. Chem., 827 (2018) 193–203.
  24. N. Kumar, H. Mittal, L. Reddy, P. Nair, J.C. Ngila, V. Parashar, Morphogenesis of ZnO nanostructures: role of acetate (COOH) and nitrate (NO3) ligand donors from zinc salt precursors in synthesis and morphology dependent photocatalytic properties, RSC Adv., 5 (2015) 38801–38809.
  25. O.M. Ama, N. Kumar, F.V. Adams, S.S. Ray, Efficient and cost-effective photoelectrochemical degradation of dyes in wastewater over an exfoliated graphite-MoO3 nanocomposite electrode, Electrocatalysis, 9 (2018) 623–631.
  26. M.A. Behnajady, N. Modirshahla, R. Hamzavi, Kinetic study on photocatalytic degradation of C.I. Acid Yellow 23 by ZnO photocatalyst, J. Hazard. Mater., 133 (2006) 226–232.
  27. J.-X. Sun, Y.-P. Yuan, L.-G. Qiu, X. Jiang, A.-J. Xie, Y.-H. Shen, J.-F. Zhu, Fabrication of composite photocatalyst g-C3N4–ZnO and enhancement of photocatalytic activity under visible light, Dalton Trans., 41 (2012) 6756–6763.
  28. W.-J. Ong, L.-L. Tan, Y.H. Ng, S.-T. Yong, S.-P. Chai, Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability?, Chem. Rev., 116 (2016) 7159–7329.
  29. J. Wen, J. Xie, X. Chen, X. Li, A review on g-C3N4-based photocatalysts, Appl. Surf. Sci., 391 (2017) 72–123.
  30. W.-K. Jo, N.C.S. Selvam, Enhanced visible light-driven photocatalytic performance of ZnO–g-C3N4 coupled with graphene oxide as a novel ternary nanocomposite, J. Hazard. Mater., 299 (2015) 462–470.
  31. W. Liu, M. Wang, C. Xu, S. Chen, Facile synthesis of g-C3N4/ZnO composite with enhanced visible light photooxidation and photoreduction properties, Chem. Eng. J., 209 (2012) 386–393.
  32. N. Kumar, S.S. Ray, J.C. Ngila, Ionic liquid-assisted synthesis of Ag/Ag2Te nanocrystals via a hydrothermal route for enhanced photocatalytic performance, New J. Chem., 41 (2017) 14618–14626.
  33. H. Chen, L. Lin, Y. Li, R. Wang, Z. Gong, Y. Cui, Y. Li, Y. Liu, X. Zhao, W. Huang, Q. Fu, F. Yang, X. Bao, CO and H2 activation over g-ZnO layers and w-ZnO(0001), ACS Catal., 9 (2019) 1373–1382.
  34. L. Ge, F. Zuo, J. Liu, Q. Ma, C. Wang, D. Sun, L. Bartels, P. Feng, Synthesis and efficient visible light photocatalytic hydrogen evolution of polymeric g-C3N4 coupled with CdS quantum dots, J. Phys. Chem. C, 116 (2012) 13708–13714.
  35. S. Yu, R.D. Webster, Y. Zhou, X. Yan, Ultrathin g-C3N4 nanosheets with hexagonal CuS nanoplates as a novel composite photocatalyst under solar light irradiation for H2 production, Catal. Sci. Technol., 7 (2017) 2050–2056.
  36. X. Huang, M.-G. Willinger, H. Fan, Z.-L. Xie, L. Wang, A. Klein-Hoffmann, F. Girgsdies, C.-S. Lee, X.-M. Meng, Single crystalline wurtzite ZnO/zinc blende ZnS coaxial heterojunctions and hollow zinc blende ZnS nanotubes: synthesis, structural characterization and optical properties, Nanoscale, 6 (2014) 8787–8795.
  37. Y. Wang, J. Cheng, S. Yu, E.J. Alcocer, M. Shahid, Z. Wang, W. Pan, Synergistic effect of N-decorated and Mn2+ doped ZnO nanofibers with enhanced photocatalytic activity, Sci. Rep., 6 (2016) 32711.
  38. P. Xia, B. Zhu, B. Cheng, J. Yu, J. Xu, 2D/2D g-C3N4/MnO2 nanocomposite as a direct Z-scheme photocatalyst for enhanced photocatalytic activity, ACS Sustainable Chem. Eng., 6 (2018) 965–973.
  39. B.P.A. George, N. Kumar, H. Abrahamse, S.S. Ray, Apoptotic efficacy of multifaceted biosynthesized silver nanoparticles on human adenocarcinoma cells, Sci. Rep., 8 (2018) 14368.
  40. V. Kumar, H.C. Swart, M. Gohain, V. Kumar, S. Som, B.C. Bezuindenhoudt, O.M. Ntwaeaborwa, Influence of ultrasonication times on the tunable colour emission of ZnO nanophosphors for lighting applications, Ultrason. Sonochem., 21 (2014) 1549–1556.
  41. P. Rai, J.-N. Jo, I.-H. Lee, Y.-T. Yu, Fabrication of flowerlike ZnO microstructures from ZnO nanorods and their photoluminescence properties, Mater. Chem. Phys., 124 (2010) 406–412.
  42. B. Panigrahy, M. Aslam, D.S. Misra, M. Ghosh, D. Bahadur, Defect-related emissions and magnetization properties of ZnO nanorods, Adv. Funct. Mater., 20 (2010) 1161–1165.
  43. M. Mousavi, A. Habibi-Yangjeh, M. Abitorabi, Fabrication of novel magnetically separable nanocomposites using graphitic carbon nitride, silver phosphate and silver chloride and their applications in photocatalytic removal of different pollutants using visible-light irradiation, J. Colloid Interface Sci., 480 (2016) 218–231.
  44. S. Adhikari, D. Sarkar, G. Madras, Hierarchical design of CuS architectures for visible light photocatalysis of 4-chlorophenol, ACS Omega, 2 (2017) 4009–4021.
  45. A.D. Sekar, H. Muthukumar, N.I. Chandrasekaran, M. Matheswaran, Photocatalytic degradation of naphthalene using calcined FeZnO/PVA nanofibers, Chemosphere, 205 (2018) 610–617.
  46. K. Mondal, S. Bhattacharyya, A. Sharma, Photocatalytic degradation of naphthalene by electrospun mesoporous carbondoped anatase TiO2 nanofiber mats, Ind. Eng. Chem. Res., 53 (2014) 18900–18909.
  47. E. Fosso-Kankeu, A.K. Mishra, Photocatalytic Degradation and Adsorption Techniques Involving Nanomaterials for Biotoxins Removal from Drinking Water, Alexandru Grumezescu, Ed., Water Purification, Academic Press, Elsevier, Vol. 5, 2017, pp. 323–354.