References

  1. N. Bolong, A.F. Ismail, M.R. Salim, T. Matsuura, A review of the effects of emerging contaminants in wastewater and options for their removal, Desalination, 239 (2009) 229–246.
  2. A. Cano-Odena, M. Spilliers, T. Dedroog, K. De Grave, J. Ramon, I.F.J. Vankelecom, Optimization of cellulose acetate nanofiltration membranes for micro pollutant removal via genetic algorithms and high throughput experimentation, J. Membr. Sci., 366 (2011) 25–32.
  3. R. Haddad, E. Ferjani, M.S. Roudesli, A. Deratani, Properties of cellulose acetate nanofiltration membranes. Application to brackish water desalination, Desalination, 167 (2004) 403–409.
  4. Z. Li, J. Ren, A.G. Fane, D.F. Li, F.S. Wong, Influence of solvent on the structure and performance of cellulose acetate membranes, J. Membr. Sci., 279 (2006) 601–607.
  5. S.H. Ye, J. Watanabe, Y. Iwasaki, K. Ishihara, Novel cellulose acetate membrane blended with phospholipid polymer for hemocompatible filtration system, J. Membr. Sci., 210 (2002) 411–421.
  6. A.W. Zularisam, A.F. Ismail, M.R. Salim, M. Sakinah, H. Ozaki, The effects of natural organic matter (NOM) fractions on fouling characteristics and flux recovery of ultra filtration membranes, Desalination, 212 (2007) 191–208.
  7. T.-S. Chung, L.Y. Jiang, Y. Li, S. Kulprathipanja, Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation, Prog. Polym. Sci., 32 (2007) 483–507.
  8. N. Ag, Materials Chemistry A., (2014) 1750–1756. doi:10.1039/c3ta14286h.
  9. Y. Yang, H. Zhang, P. Wang, Q. Zheng, J. Li, The influence of nano-sized TiO2 fillers on the morphologies and properties of PSF UF membrane, J. Membr. Sci., 288 (2007) 231–238.
  10. N. Rakhshan, M. Pakizeh, The effect of functionalized SiO2 nanoparticles on the morphology and triazines separation properties of cellulose acetate membranes, J. Ind. Eng. Chem., 34 (2016) 51–60.
  11. C.H. Worthley, K.T. Constantopoulos, M. Ginic-Markovic, E. Markovic, S. Clarke, A study into the effect of POSS nanoparticles on cellulose acetate membranes, J. Membr. Sci., 431 (2013) 62–71.
  12. L.A.N. El-Din, A. El-Gendi, N. Ismail, K.A. Abed, A.I. Ahmed, Evaluation of cellulose acetate membrane with carbon nanotubes additives, J. Ind. Eng. Chem., 26 (2015) 259–264.
  13. N. El Badawi, A.R. Ramadan, A.M.K. Esawi, M. El-Morsi, Novel carbon nanotube–cellulose acetate nanocomposite membranes for water filtration applications, Desalination, 344 (2014) 79–85.
  14. H. a. Shawky, S.-R. Chae, S. Lin, M.R. Wiesner, Synthesis and characterization of a carbon nanotube/polymer nanocomposite membrane for water treatment, Desalination, 272 (2011) 46–50.
  15. W. Choi, J. Choi, J. Bang, J. Lee, Layer-by-layer assembly of graphene oxide nanosheets on polyamide membranes for durable reverse osmosis applications, ACS Appl. Mater. Interfaces, (2013) Ahead of Print, doi:10.1021/am403790s.
  16. Z. Wang, H. Yu, J. Xia, F. Zhang, F. Li, Y. Xia, Y. Li, Novel GO-blended PVDF ultra filtration membranes, Desalination, 299 (2012) 50–54.
  17. S. Zinadini, A.A. Zinatizadeh, M. Rahimi, V. Vatanpour, H. Zangeneh, Preparation of a novel anti-fouling mixed matrix PES membrane by embedding graphene oxide nanoplates, J. Membr. Sci., 453 (2014) 292–301.
  18. B.M. Ganesh, A.M. Isloor, A.F. Ismail, Enhanced hydrophilicity and salt rejection study of graphene oxide-polysulfone mixed matrix membrane, Desalination, 313 (2013) 199–207.
  19. S. Yi, Y. Su, B. Qi, Z. Su, Y. Wan, Application of response surface methodology and central composite rotatable design in optimizing the preparation conditions of vinyltriethoxysilane modified silicalite/polydimethylsiloxane hybrid pervaporation membranes, Sep. Purif. Technol., 71 (2010) 252–262.
  20. A. Maher, M. Sadeghi, A. Moheb, Heavy metal elimination from drinking water using nanofiltration membrane technology and process optimization using response surface methodology, Desalination, 352 (2014) 166–173.
  21. H.P. Ngang, A.L. Ahmad, S.C. Low, B.S. Ooi, Preparation of mixed-matrix membranes for micellar enhanced ultra filtration based on response surface methodology, Desalination, 293 (2012) 7–20.
  22. M. Khayet, C. Cojocaru, M. Essalhi, Artificial neural network modeling and response surface methodology of desalination by reverse osmosis, J. Membr. Sci., 368 (2011) 202–214.
  23. Y. Shi, C. Li, D. He, L. Shen, N. Bao, Preparation of graphene oxide–cellulose acetate nanocomposite membrane for highflux desalination, J. Mater. Sci., 52 (2017) 13296–13306.
  24. S.M. Ghaseminezhad, M. Barikani, M. Salehirad, Development of graphene oxide-cellulose acetate nanocomposite reverse osmosis membrane for seawater desalination, Compos. Part B Eng., 161 (2019) 320–327.
  25. K. Chen, C. Xiao, Q. Huang, H. Liu, Y. Tang, Fabrication and properties of graphene oxide-embedded cellulose triacetate RO composite membrane via melting method, Desalination, 425 (2018) 175–184.
  26. I. Pinnau, Membrane separations/membrane preparation, Encycl. Sep. Sci., (2000) 1755–1764.
  27. S.S. Eslah, S. Shokrollahzadeh, O.M. Jazani, A. Samimi, Forward osmosis water desalination: Fabrication of graphene oxide-polyamide/polysulfone thin-film nanocomposite membrane with high water flux and low reverse salt diffusion, Sep. Sci. Technol., 53 (2018) 573–583.
  28. M.A. Bezerra, R.E. Santelli, E.P. Oliveira, L.S. Villar, L.A. Escaleira, Response surface methodology (RSM) as a tool for optimization in analytical chemistry, Talanta, 76 (2008) 965–977.
  29. N. Amenaghawon, K.I. Nwaru, F. a. Aisien, S.E. Ogbeide, C.O. Okieimen, Application of Box-Behnken design for the optimization of citric acid production from corn starch using Aspergillus niger., Br. Biotechnol. J., 3 (2013) 236–245.
  30. P. Qiu, M. Cui, K. Kang, B. Park, Y. Son, E. Khim, M. Jang, J. Khim, Application of Box-Behnken design with response surface methodology for modeling and optimizing ultrasonic oxidation of arsenite with H2O2, Cent. Eur. J. Chem., 12 (2014) 164–172.
  31. M. Safarpour, A. Khataee, V. Vatanpour, Thin film nanocomposite reverse osmosis membrane modified by reduced graphene oxide/TiO2 with improved desalination performance, J. Membr. Sci., 489 (2015) 43–54.
  32. D.P. Suhas, A.V. Raghu, H.M. Jeong, T.M. Aminabhavi, Graphene-loaded sodium alginate nanocomposite membranes with enhanced isopropanol dehydration performance via a pervaporation technique, RSC Adv., 3 (2013) 17120.
  33. S.P. Dharupaneedi, R.V. Anjanapura, J.M. Han, T.M. Aminabhavi, Functionalized graphene sheets embedded in chitosan nanocomposite membranes for ethanol and isopropanol dehydration via pervaporation, Ind. Eng. Chem. Res., 53 (2014) 14474–14484.
  34. K.a. Mahmoud, B. Mansoor, A. Mansour, M. Khraisheh, Functional graphene nanosheets: The next generation membranes for water desalination, Desalination, 356 (2015) 208–225.
  35. Q. Wang, N. Li, B. Bolto, M. Hoang, Z. Xie, Desalination by pervaporation: A review, Desalination, 387 (2016) 46–60.
  36. C.H. Cho, K.Y. Oh, S.K. Kim, J.G. Yeo, P. Sharma, Pervaporative seawater desalination using NaA zeolite membrane: Mechanisms of high water flux and high salt rejection, J. Membr. Sci., 371 (2011) 226–238.
  37. L. He, L.F. Dumée, C. Feng, L. Velleman, R. Reis, F. She, W. Gao, L. Kong, Promoted water transport across graphene oxide-poly(amide) thin film composite membranes and their antibacterial activity, Desalination, 365 (2015) 126–135.
  38. D. Li, L. He, D. Dong, M. Forsyth, H. Wang, Preparation of silicalite-polyamide composite membranes for desalination, Asia-Pacific J. Chem. Eng., 7 (2012) 434–441.
  39. R.W. Baker, Reverse Osmosis, in: Membr. Technol. Appl., John Wiley & Sons, Ltd, Chichester, UK, 2012: pp. 207–251.
  40. Y. Gao, M. Hu, B. Mi, Membrane surface modification with TiO2–graphene oxide for enhanced photo catalytic performance, J. Membr. Sci., 455 (2014) 349–356.
  41. D. Zhang, X. Wen, L. Shi, T. Yan, J. Zhang, Enhanced capacitive deionization of graphene/mesoporous carbon composites, Nanoscale, 4 (2012) 5440.
  42. X. Wen, D. Zhang, T. Yan, J. Zhang, L. Shi, Three-dimensional graphene-based hierarchically porous carbon composites prepared by a dual-template strategy for capacitive deionization, J. Mater. Chem. A., 1 (2013) 12334.
  43. H.J. Kim, K. Choi, Y. Baek, D.G. Kim, J. Shim, J. Yoon, J.C. Lee, High-performance reverse osmosis CNT/polyamide nanocomposite membrane by controlled inter facial interactions, ACS Appl. Mater. Interfaces, 6 (2014) 2819–2829.
  44. J.K. Holt, Fast mass transport through sub-2-nanometer carbon nanotubes, Science, 312 (2006) 1034–1037.
  45. G. Hummer, J.C. Rasaiah, J.P. Noworyta, Water conduction through the hydrophobic channel of a carbon nanotube, Nature, 414 (2001) 188–190.
  46. H.D. Lee, H.W. Kim, Y.H. Cho, H.B. Park, Experimental evidence of rapid water transport through carbon nanotubes embedded in polymeric desalination membranes, Small, 10 (2014) 2653–2660.
  47. S. Karan, S. Samitsu, X. Peng, K. Kurashima, I. Ichinose, Ultrafast viscous permeation of organic solvents through diamond-like carbon nanosheets, Science, 335 (2012) 444–447.
  48. B.J. Hinds, Aligned multi-walled carbon nanotube membranes, Science, 303 (2004) 62–65.
  49. S. Xia, L. Yao, Y. Zhao, N. Li, Y. Zheng, Preparation of graphene oxide modified polyamide thin film composite membranes with improved hydrophilicity for natural organic matter removal, Chem. Eng. J., 280 (2015) 720–727.
  50. H. Wang, L. Shi, T. Yan, J. Zhang, Q. Zhong, D. Zhang, Design of graphene-coated hollow mesoporous carbon spheres as high performance electrodes for capacitive deionization, J. Mater. Chem. A., 2 (2014) 4739–4750.
  51. M.E.A. Ali, L. Wang, X. Wang, X. Feng, Thin film composite membranes embedded with graphene oxide for water desalination, Desalination, 386 (2016) 67–76.
  52. R.R. Nair, H.A. Wu, P.N. Jayaram, I.V. Grigorieva, A.K. Geim, Unimpeded permeation of water through helium-leak-tight graphene-based membranes, Science, 335 (2012) 442–444.
  53. B. Feng, K. Xu, A. Huang, Covalent synthesis of three-dimensional graphene oxide framework (GOF) membrane for seawater desalination, Desalination, 394 (2016) 123–130.
  54. B.S. Lalia, V. Kochkodan, R. Hashaikeh, N. Hilal, A review on membrane fabrication: Structure, properties and performance relationship, Desalination, 326 (2013) 77–95.