1. K. Majewska-Nowak, I. Kowalska, M. Kabsch-Korbutowicz, Ultrafiltration of SDS solutions using polymeric membranes, Desalination, 184 (2005) 415–422.
  2. P. Li, M. Ishiguro, Adsorption of anionic surfactant (sodium dodecyl sulfate) on silica, Soil Sci. Plant Nutr., 62 (2016) 223–229.
  3. F. Ríos, M. Olak-Kucharczyk, M. Gmurek, S. Ledakowicz, Removal efficiency of anionic surfactants from water during UVC photolysis and advanced oxidation process in H2O2/UVC system, Arch. Environ. Prot., 43 (2017) 20–26.
  4. C.E. Hoeft, R.L. Zollars, Adsorption of single anionic surfactants on hydrophobic surfaces, J. Colloid Interface Sci., 177 (1996) 171–178.
  5. H.M. Nguyen, C.M. Phan, T. Sen, Degradation of sodium dodecyl sulfate by photoelectrochemical and electrochemical processes, Chem. Eng. J., 287 (2016) 633–639.
  6. P. Das Purakayastha, A. Pal, M. Bandopadhyay, Adsorption of anionic surfactant by a low-cost adsorbent, J. Environ. Sci. Health. A. Tox. Hazard. Subst. Environ. Eng., 37 (2002) 925–938.
  7. A. Pal, S. Pan, S. Saha, Synergistically improved adsorption of anionic surfactant and crystal violet on chitosan hydrogel beads, Chem. Eng. J., 217 (2013) 426–434.
  8. A. Ariapad, M.A. Zanjanchi, M. Arvand, Efficient removal of anionic surfactant using partial template-containing MCM-41, Desalination, 284 (2012) 142–149.
  9. M. Hosseinnia, A. Hashtroudiand M.S. Pazouki, M. Banifatemi, Removal of surfactants from wastewater by rice husk, Iran J. Chem. Eng., 3 (2006) 3–9.
  10. M.G. Ivanets, T.A. Savitskaya, T.N. Nevar, D.D. Grinshpan, Adsorption of sodium dodecylsulfate on modified carbon adsorbents, Russ. J. Phys. Chem. A., 86 (2012) 1710–1715.
  11. P. Das Purakayastha, A. Pal, M. Bandyopadhyay, Sorption kinetics of anionic surfactant on to waste tire rubber granules, Sep. Purif. Technol., 46 (2005) 129–135.
  12. H. Xia, X. Zhao, X. Zhao, P. Yao, H. Zhang, Adsorption of sodium dodecyl sulfate onto precipitate in treatment of vat dark blue BO by dissolved air flotation, Environ. Technol. (UK), 39 (2018) 1908–1913.
  13. A.O. Adekanmbi, I.M. Usinola, Biodegradation of sodium dodecyl sulphate (SDS) by two bacteria isolated from wastewater generated by a detergent-manufacturing plant in Nigeria, Jordan J. Biol. Sci., 10 (2017) 251–255.
  14. P.S. Ambily, M.S. Jisha, Biodegradation of anionic surfactant, sodium dodecyl sulphate by pseudomonas aeruginosa MTCC 10311, J. Environ. Biol., 33 (2012) 717–720.
  15. C. Korzenowski, M.B.O. Martins, A.M. Bernardes, J.Z. Ferreira, E.C.N.F. Duarteand M.N. De Pinho, Removal of anionic surfactants by nanofiltration, Desal. Water Treat., 44 (2012) 269–275.
  16. I. Kowalska, M. Kabsch-Korbutowicz, K. Majewska-Nowak, T. Winnicki, Separation of anionic surfactants on ultrafiltration membranes, Desalination, 162 (2004) 33–40.
  17. K. Ikehata, M.G. El-Din, Degradation of recalcitrant surfactants in wastewater by ozonation and advanced oxidation processes: A review, Ozone Sci. Eng., 26 (2004) 327–343.
  18. M. Sanchez, M.J. Rivero, I. Ortiz, Kinetics of dodecylbenzenesulphonate mineralisation by TiO2 photocatalysis, Appl. Catal. B Environ., 101 (2011) 515–521.
  19. T.N. Chikwe, R.E. Ekpo, I. Okoye, Competitive adsorption of organic solvents using modified and unmodified calcium bentonite clay mineral, Chem. Int., 4 (2018) 230–239.
  20. M. Fazal-ur-Rehman, Methodological trends in preparation of activated carbon from local sources and their impacts on production - a review, Chem. Int., 4 (2018) 109–119.
  21. A. Abhishek, N. Saranya, P. Chandi, N. Selvaraju, Studies on the remediation of chromium (VI) from simulated wastewater using novel biomass of Pinus kesiya cone, Desal. Water Treat., 114 (2018) 192–204.
  22. E. Nakkeeran, N. Saranya, M.S. Giri Nandagopal, A. Santhiagu, N. Selvaraju, Hexavalent chromium removal from aqueous solutions by a novel powder prepared from Colocasia esculenta leaves, Int. J. Phytoremediation 18 (2016) 812–821.
  23. S. Rangabhashiyam, N. Selvaraju, Adsorptive remediation of hexavalent chromium from synthetic wastewater by a natural and ZnCl2 activated Sterculia guttata shell, J. Mol. Liq., 207 (2015) 39–49.
  24. E. Suganya, S. Rangabhashiyam, A.V. Lity, N. Selvaraju, Removal of hexavalent chromium from aqueous solution by a novel biosorbent Caryota urens seeds: equilibrium and kinetic studies, Desal. Water Treat., 57 (2016) 23940–23950.
  25. S. Rangabhashiyam, E. Suganya, N. Selvaraju, Packed bed column investigation on hexavalent chromium adsorption using activated carbon prepared from Swietenia Mahogani fruit shells, Desal. Water Treat., 57 (2016) 13048–13055.
  26. N.E. Ibisi, C.A. Asoluka, Use of agro-waste (Musa paradisiaca peels) as a sustainable biosorbent for toxic metal ions removal from contaminated water, Chem. Int., 4 (2018) 52–59.
  27. N. Saranya, A. Ajmani, V. Sivasubramanian, N. Selvaraju, Hexavalent chromium removal from simulated and real effluents using Artocarpus heterophyllus peel biosorbent - Batch and continuous studies, J. Mol. Liq., 265 (2018) 779–790.
  28. S. Rangabhashiyam, E. Suganya, A.V. Lity, N. Selvaraju, Equilibrium and kinetics studies of hexavalent chromium biosorption on a novel green macroalgae Enteromorpha sp., Res. Chem. Intermed., 42 (2016) 1275–1294.
  29. P.S. Bhandari, P.R. Gogate, Kinetic and thermodynamic study of adsorptive removal of sodium dodecyl benzene sulfonate using adsorbent based on thermo-chemical activation of coconut shell, J. Mol. Liq., 252 (2018) 495–505.
  30. A. Adak, A. Pal, M. Bandyopadhyay, Spectrophotometric determination of anionic surfactants in wastewater using acridine orange, Indian J. Chem. Technol., 12 (2005) 145–148.
  31. X. Wang, D. Li, W. Li, J. Peng, H. Xia, L. Zhang, S. Guo, G. Chen, Optimization of mesoporous activated carbon from coconut shells by chemical activation with phosphoric acid, BioResources, 8 (2013) 6184–6195.
  32. P.C. Pavan, E.L. Crepaldi, J.B. Valim, Sorption of anionic surfactants on layered double hydroxides, J. Colloid Interface Sci., 229 (2000) 346–352.
  33. S.R. Taffarel, J. Rubio, Adsorption of sodium dodecyl benzene sulfonate from aqueous solution using a modified natural zeolite with CTAB, Miner. Eng., 23 (2010) 771–779.
  34. C. Moreno-Castilla, Adsorption of organic molecules from aqueous solutions on carbon materials, Carbon, 42 (2004) 83–94.
  35. Y. Zhao, P. Lu, C. Li, X. Fan, Q. Wen, Q. Zhan, X. Shu, T. Xu, G. Zeng, Adsorption mechanism of sodium dodecyl benzene sulfonate on carbon blacks by adsorption isotherm and zeta potential determinations, Environ. Technol., 34 (2013) 201–207.
  36. Y. Ihara, Adsorption of anionic surfactants and related compounds from aqueous solution onto activated carbon and synthetic adsorbent, J. Appl. Polym. Sci., 44 (1992) 1837–1840.
  37. M. Sekar, V. Sakthi, S. Rengaraj, Kinetics and equilibrium adsorption study of lead(II) onto activated carbon prepared from coconut shell, J. Colloid Interface Sci., 279 (2004) 307–313.
  38. V.S. Mane, P.V.V Babu, Studies on the adsorption of Brilliant Green dye from aqueous solution onto low-cost NaOH treated saw dust, Desalination, 273 (2011) 321–329.
  39. R. Ahmad, R. Kumar, Adsorptive removal of congo red dye from aqueous solution using bael shell carbon, Appl. Surf. Sci., 257 (2010) 1628–1633.
  40. N. Barka, M. Abdennouri, M. El Makhfoukand S. Qourzal, Biosorption characteristics of cadmium and lead onto ecofriendly dried cactus (Opuntia ficus indica) cladodes, J. Environ. Chem. Eng., 1 (2013) 144–149.
  41. M.H. Kalavathy, T. Karthikeyan, S. Rajgopal, L.R. Miranda, Kinetic and isotherm studies of Cu(II) adsorption onto H3PO4-activated rubber wood sawdust, J. Colloid Interface Sci., 292 (2005) 354–362.
  42. S.N. Jain, P.R. Gogate, NaOH-treated dead leaves of Ficus racemosa as an efficient biosorbent for Acid Blue 25 removal, Int. J. Environ. Sci. Technol., 14 (2017) 531–542.
  43. S. Rangabhashiyam, N. Selvaraju, Evaluation of the biosorption potential of a novel Caryota urens inflorescence waste biomass for the removal of hexavalent chromium from aqueous solutions, J. Taiwan Inst. Chem. Eng., 47 (2015) 59–70.
  44. E. Nakkeeran, S. Rangabhashiyam, M.S. Giri Nandagopal, N. Selvaraju, Removal of Cr(VI) from aqueous solution using Strychnos nux-vomica shell as an adsorbent, Desal. Water Treat., 57 (2016) 23951–23964.
  45. J.S. Zogorski, S.D. Faustand J.H. Haas, The kinetics of adsorption of phenols by granular activated carbon, J. Colloid Interface Sci., 55 (1976) 329–341.
  46. S. Lagergren, About the theory of so-called adsorption of soluble substance, K. Sven. Vetenskapsakademiens Handl., 24 (1898) 1–39.
  47. Y.S. Ho, Citation review of Lagergren kinetic rate equation on adsorption reactions, Scientometrics, 59 (2004) 171–177.
  48. Y.S. Ho, G. McKay, A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents, Trans I ChemE., 76 (1998) 332–340.
  49. J.C.Y. Ng, W.H. Cheung, G. McKay, Equilibrium studies of the sorption of Cu(II) ions onto chitosan, J. Colloid Interface Sci., 255 (2002) 64–74.
  50. S. Karaca, A. Gürses, M. Ejder, M. Açikyildiz, Kinetic modeling of liquid-phase adsorption of phosphate on dolomite, J. Colloid Interface Sci., 277 (2004) 257–263.
  51. W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon from solution, J. Sanit. Eng. Div., 89 (1963) 31–60.
  52. I.A.W. Tan, A.L. Ahmad, B.H. Hameed, Adsorption isotherms, kinetics, thermodynamics and desorption studies of 2,4,6-trichlorophenol on oil palm empty fruit bunch-based activated carbon, J. Hazard. Mater., 164 (2009) 473–482.
  53. A.C.A. de Lima, R.F. Nascimento, F.F. de Sousa, J.M. Filho, A.C. Oliveira, Modified coconut shell fibers: A green and economical sorbent for the removal of anions from aqueous solutions, Chem. Eng. J., 185–186 (2012) 274–284.
  54. K.K. Beltrame, A.L. Cazetta, P.S.C. de Souza, L. Spessato, T.L. Silva, V.C. Almeida, Adsorption of caffeine on mesoporous activated carbon fibers prepared from pineapple plant leaves, Ecotoxicol. Environ. Saf., 147 (2018) 64–71.
  55. J. Ma, M. Yang, F. Yu, J. Zheng, Water-enhanced removal of ciprofloxacin from water by porous graphene hydrogel, Sci. Rep., 5 (2015) 13578.
  56. R. Pandey, N.G. Ansari, R.L. Prasad, R.C. Murthy, Pb (II) removal from aqueous solution by Cucumissativus (Cucumber) peel : kinetic, equilibrium and thermodynamic study, Am. J. Environ. Prot., 2 (2014) 51–58.
  57. S. Nethaji, A. Sivasamyand A.B. Mandal, Adsorption isotherms, kinetics and mechanism for the adsorption of cationic and anionic dyes onto carbonaceous particles prepared from Juglans regia shell biomass, Int. J. Environ. Sci. Technol., 10 (2012) 231–242.
  58. L. Yu, Y.M. Luo, The adsorption mechanism of anionic and cationic dyes by Jerusalem artichoke stalk-based mesoporous activated carbon, J. Environ. Chem. Eng., 2 (2014) 220–229.
  59. A. Mittal, J. Mittal, A. Malviya, V.K. Gupta, Adsorptive removal of hazardous anionic dye “Congo red” from wastewater using waste materials and recovery by desorption, J. Colloid Interface Sci., 340 (2009) 16–26.
  60. K.Y. Foo, B.H. Hameed, Insights into the modeling of adsorption isotherm systems, Chem. Eng. J., 156 (2010) 2–10.
  61. I. Langmuir, Adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc., 40 (1918) 1361–1403.
  62. H.M.F. Freundlich, Over the adsorption solutions, J. Phys. Chem., 57 (1906) 385–470.
  63. L. Huang, Y. Sun, T. Yang, L. Li, Adsorption behavior of Ni (II) on lotus stalks derived active carbon by phosphoric acid activation, Desalination, 268 (2011) 12–19.
  64. M. Temkin, V. Pyzev, Kinetics of ammonia synthesis on promoted iron catalyst, Acta Physicochim USSR, 12 (1940) 217– 225.
  65. A. Dada, A. Olalekan, A. Olatunyaand O. Dada, Langmuir, Freundlich, Temkin and Dubinin – Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk, IOSR J. Appl. Chem., 3 (2012) 38–45.
  66. S. Gupta, A. Pal, P.K. Ghosh, M. Bandyopadhyay, Performance of waste activated carbon as a low-cost adsorbent for the removal of anionic surfactant from aquatic environment, J. Environ. Sci. Health. A. Tox. Hazard. Subst. Environ. Eng., 38 (2003) 381–397.
  67. S.N. Jain, P.R. Gogate, Efficient removal of Acid Green 25 dye from wastewater using activated Prunus Dulcis as biosorbent: Batch and column studies, J. Environ. Manage., 210 (2018) 226–238.
  68. I.A.W. Tan, B.H. Hameed, Adsorption isotherms, kinetics, thermodynamics and desorption studies of basic dye on activated carbon derived from oil palm empty fruit bunch, J. Appl. Sci., 10 (2010) 2565–2571.
  69. A. Gurses, M. Yalcin, M. Sozbilir, C. Dogar, The investigation of adsorption thermodynamics and mechanism of a cationic surfactant, CTAB, onto powdered active carbon, Fuel Process. Technol., 81 (2003) 57–66.
  70. K. Namasivayam, C. Muniasamy, N. Gayatri, K. Rani, M. Rangnathan, Removal of dyes from aqueous solutions by cellulosic waste orange peel, Bioresource Technol., 57 (1996) 37–63.
  71. G. Crini, Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment, Prog. Polym. Sci., 30 (2005) 38–70.
  72. P. Das Purakayastha, A. Pal, M. Bandyopadhyay, Adsorbent selection for anionic surfactant removal from water, Indian J. Chem. Technol., 12 (2005) 281–284.
  73. T.K. Sen, M.T. Thi, S. Afroze, C. Phan, M. Ang, Removal of anionic surfactant sodium dodecyl sulphate from aqueous solution by adsorption onto pine cone biomass of Pinus Radiate: equilibrium, thermodynamic, kinetics, mechanism and process design Removal of anionics, Desal. Water Treat., 45 (2012) 263–275.
  74. G. Moussavi, S. Shekoohiyan, S. Mojab, Adsorption capacity of NH4Cl-induced activated carbon for removing sodium dodecyl sulfate from water, Desal. Water Treat., 57 (2016) 11283–11290.