1. H. Ding, Y. Wu, B. Zou, Q. Lou, W. Zhang, J. Zhong, L. Lu, G. Dai, Simultaneous removal and degradation characteristics of sulfonamide, tetracycline, and quinolone antibiotics by laccase-mediated oxidation coupled with soil adsorption, J. Hazard. Mater., 307 (2016) 350–358.
  2. P. Grenni, V. Ancona, A.B. Caracciolo, Ecological effects of antibiotics on natural ecosystems: A review, Microchem. J., 136 (2018) 25–39.
  3. M. Pirsaheb, S. Moradi, M. Shahlaei, X. Wang, N. Farhadian, A new composite of nano zero-valent iron encapsulated in carbon dots for oxidative removal of bio-refractory antibiotics from water, J. Clean. Prod., 209 (2019) 1523–1532.
  4. S.D. Jojoa-Sierra, J. Silva-Agredo, E. Herrera-Calderon, R.A. Torres-Palma, Elimination of the antibiotic norfloxacin in municipal wastewater, urine and seawater by electrochemical oxidation on IrO2 anodes, Sci. Total Environ., 575 (2017) 1228–1238.
  5. R. Khosravi, A. Zarei, M. Heidari, A. Ahmadfazeli, M. Vosughi, M. Fazlzadeh, Application of ZnO and TiO2 nanoparticles coated onto montmorillonite in the presence of H2O2 for efficient removal of cephalexin from aqueous solutions, Korean J. Chem. Eng., 35 (2018) 1000–1008.
  6. D.Q. Tuc, M.G. Elodie, L. Pierre, A. Fabrice, B. Martine, E. Joelle, C. Marc, Fate of antibiotics from hospital and domestic sources in a sewage network, Sci. Total Environ., 575 (2017) 758–766.
  7. M. Leili, M. Fazlzadeh, A. Bhatnagar, Green synthesis of nano-zero-valent iron from Nettle and Thyme leaf extracts and their application for the removal of cephalexin antibiotic from aqueous solutions, Environ. Technol., 39 (2018) 1158–1172.
  8. M. Fazlzadeh, A. Rahmani, H.R. Nasehinia, H. Rahmani, K. Rahmani, Degradation of sulfathiazole antibiotics in aqueous solutions by using zero valent iron nanoparticles and hydrogen peroxide, Koomesh., 18 (2016) 350–356.
  9. S.Y. Jasim, J. Saththasivam, Advanced oxidation processes to remove cyanotoxins in water, Desalination, 406 (2017) 83–87.
  10. X. Du, Y. Zhang, I. Hussain, S. Huang, W. Huang, Insight into reactive oxygen species in persulfate activation with copper oxide: Activated persulfate and trace radicals, Chem. Eng. J., 313 (2017) 1023–1032.
  11. H. Santoke, W.J. Cooper, Environmental photochemical fate of selected pharmaceutical compounds in natural and reconstituted Suwannee River water: Role of reactive species in indirect photolysis, Sci. Total. Environ., 580 (2017) 626–631.
  12. E. Etebu, I. Arikekpar, Antibiotics: classification and mechanisms of action with emphasis on molecular perspectives, Int. J. Appl. Microbiol. Biotechnol. Res., 4 (2016) 90–101.
  13. K.F. Kong, L. Schneper, K. Mathee, Beta-lactam antibiotics: from antibiosis to resistance and bacteriology, Apmis, 118 (2010) 1–36.
  14. O.A. Sogebi, B.O. Adefuye, S.O. Adebola, S.M. Oladeji, T.O. Adedeji, Clinical predictors of aminoglycoside-induced ototoxicity in drug-resistant Tuberculosis patients on intensive therapy, Auris Nasus Larynx., 44 (2017) 404–410.
  15. M. O’Neil, A. Smith, P. Heckelman, S. Budavari, eds., The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals, 13-eme éd. Whitehouse Station (NJ): Merck & Co. Inc; 2001.
  16. H. Petković, T. Lukežič, J. Šušković, Biosynthesis of oxytetracycline by streptomyces rimosus: past, present and future directions in the development of tetracycline antibiotics, Food Technol. Biotech., 55 (2017) 3–13.
  17. J. Wan, P. Guo, X. Peng, K. Wen, Effect of erythromycin exposure on the growth, antioxidant system and photosynthesis of Microcystis flos-aquae, J. Hazard. Mater., 283 (2015) 778–786.
  18. H. Kurasaki, K. Tsuda, M. Shinoyama, N. Takaya, Y. Yamaguchi, R. Kishii, K. Iwase, N. Ando, M. Nomura, Y. Kohno, LpxC inhibitors: Design, synthesis, and biological evaluation of oxazolidinones as Gram-negative antibacterial agents, ACS Med. Chem. Lett., 7 (2016) 623–628.
  19. M. Martinez, P. McDermott, R. Walker, Pharmacology of the fluoroquinolones: a perspective for the use in domestic animals, Vet. J., 172 (2006) 10–28.
  20. S. Ariyasu, P.C. Too, J. Mu, C.C. Goh, Y. Ding, Y.L. Tnay, E.K.L. Yeow, L. Yang, L.G. Ng, S. Chiba, B. Xing, Glycopeptide antibiotic analogs for selective inactivation and two-photon imaging of vancomycin-resistant strains, Chem. Commun., 52 (2016) 4667–4670.
  21. L.W. Matzek, K.E. Carter, Sustained persulfate activation using solid iron: Kinetics and application to ciprofloxacin degradation, Chem. Eng. J., 307 (2017) 650–660.
  22. M.H. Wu, C.J. Que, G. Xu, Y.F. Sun, J. Ma, H. Xu, R. Sun, L. Tang, Occurrence, fate and interrelation of selected antibiotics in sewage treatment plants and their receiving surface water, Ecotox. Environ. Safe., 132 (2016) 132–139.
  23. M. Sadani, M.M. Mofrad, G.K. Feizabadi, M. Hadei, F. Yousefian, A mini-review on new disinfection alternative: bacteriophages and pathogen removal potential from water and wastewater, Desal. Water Treat., 19 (2017) 228–38.
  24. A. Dargahi, M. Pirsaheb, S. Hazrati, M. Fazlzadehdavil, R. Khamutian, T. Amirian, Evaluating efficiency of H2O2 on removal of organic matter from drinking water, Desal. Water Treat., 54 (2015) 1589–1593.
  25. E. Azizi, M. Fazlzadeh, M. Ghayebzadeh, L. Hemati, M. Beikmohammadi, H.R. Ghaffari, H.R. Zakeri, K. Sharafi, Application of advanced oxidation process (H2O2/UV) for removal of organic materials from pharmaceutical industry effluent, Environ. Prot. Eng., 43 (2017) 183–191.
  26. F.C. Moreira, R.A. Boaventura, E. Brillas, V.J. Vilar, Electrochemical advanced oxidation processes: a review on their application to synthetic and real wastewaters, Appl Catal B., 61 (2017) 202–217.
  27. R. Dewil, D. Mantzavinos, I. Poulios, M.A. Rodrigo, New perspectives for advanced oxidation processes, J. Environ. Manage., 9 (2017) 195–193.
  28. B. Bethi, S. Sonawane, I. Potoroko, Novel hybrid system based on hydrodynamic, Environ. Manage., 90 (2009) 2313–2342.
  29. J.R. Alvarez-Corena, J.A. Bergendahl, F.L. Hart, Advanced oxidation of five contaminants in water by UV/TiO2: reaction kinetics and byproducts identification, J. Environ. Manage., 181 (2016) 544–551.
  30. Y. Ji, Y Shi, W. Dong, X. Wen, M. Jiang, J. Lu, Thermo-activated persulfate oxidation system for tetracycline antibiotics degradation in aqueous solution, Chem. Eng. J., 298 (2016) 225–233.
  31. Y. Shiying, W Ping, Y. Xin, W. Guang, W. Zhang, S. Liang, A novel advanced oxidation process to degrade organic pollutants in wastewater: Microwave-activated persulfate oxidation, J. Environ. Sci., 21 (2009) 1175–1180.
  32. A. Ghauch, A Baalbaki, M. Amasha, R. El Asmar, O. Tantawi, Contribution of persulfate in UV-254 nm activated systems for complete degradation of chloramphenicol antibiotic in water, Chem. Eng. J., 317 (2017) 1012–1025.
  33. C.H. Weng, K.L. Tsai, Ultrasound and heat enhanced persulfate oxidation activated with Fe0 aggregate for the decolorization of CI Direct Red 23, Ultrason. Sonochem., 29 (2016) 11–18.
  34. D. An, P. Westerhoff, M. Zheng, M. Wu, Y. Yang, C-A. Chiu, UV-activated persulfate oxidation and regeneration of NOM-saturated granular activated carbon, Water Res., 73 (2015) 304–310.
  35. Y. Ji, W. Xie, Y. Fan, Y.D. Shi, Kong, J. Lu, Degradation of trimethoprim by thermo-activated persulfate oxidation: reaction kinetics and transformation mechanisms, Chem. Eng. J., 286 (2016) 16–24.
  36. X. Cheng, H. Guo, Y. Zhang, X. Wu, Y. Liu, Non-photochemical production of singlet oxygen via activation of persulfate by carbon nanotubes, Water Res., 113 (2017) 80–88.
  37. J.E. Silveira, W.S. Paz, P. Garcia-Muñoz, J.A. Zazo, J.A. Casas, UV-LED/ilmenite/persulfate for azo dye mineralization: The role of sulfate in the catalyst deactivation, Appl. Catal. B., 219 (2017) 314–321.
  38. Y. Liu, H. Guo, Y. Zhang, X. Cheng, P. Zhou, G. Zhang, J. Wang, P. Tang, T. Ke, W. Li, Heterogeneous activation of persulfate for Rhodamine B degradation with 3D flower sphere-like BiOI/Fe3O4 microspheres under visible light irradiation, Sep. Purif. Technol., 192 (2018) 88–98.
  39. S. Dhaka, R. Kumar, M.A. Khan, K.J. Paeng, M.B. Kurade, S.J. Kim, et al. Aqueous phase degradation of methyl paraben using UV-activated persulfate method, Chem. Eng. J., 321 (2017) 11–19.
  40. X. Lu, Y. Shao, N. Gao, J. Chen, H. Deng, W. Chu, N. An, F. Peng, Investigation of clofibric acid removal by UV/persulfate and UV/chlorine processes: Kinetics and formation of disinfection byproducts during subsequent chlor(am)ination, Chem. Eng. J., 331 (2018) 364–371.
  41. X. Lu, Y. Shao, N. Gao, J. Chen, Y. Zhang, H. Xiang, Y. Guo, Degradation of diclofenac by UV-activated persulfate process: Kinetic studies, degradation pathways and toxicity assessments, Ecotoxicol. Environ. Saf., 141 (2017) 139–147.
  42. M. Feng, R. Qu, X. Zhang, P. Sun, Y. Sui, L. Wang, Z. Wang, Degradation of flumequine in aqueous solution by persulfate activated with common methods and polyhydroquinone-coated magnetite/multi-walled carbon nanotubes catalysts, Water Res., 85 (2015) 1–10.
  43. Q. Wang, X. Lu, Y. Cao, J. Ma, J. Jiang, X. Bai, T. Hu, Degradation of Bisphenol S by heat activated persulfate: Kinetics study, transformation pathways and influences of co-existing chemicals, Chem. Eng. J., 328 (2017) 236–245.
  44. K.E. Manz, K.E Carter, Investigating the effects of heat activated persulfate on the degradation of furfural, a component of hydraulic fracturing fluid chemical additives, Chem. Eng. J., 327 (2017) 1021–1032.
  45. P. Xie, J. Ma, W. Liu, J. Zou, S. Yue, Impact of UV/persulfate pretreatment on the formation of disinfection byproducts during subsequent chlorination of natural organic matter, Chem. Eng. J., 269 (2015) 203–211.
  46. M. Pirsaheb, H. Hossini, F. Asadi, H. Janjani., A systematic review on organochlorine and organophosphorus pesticides content in water resources, Toxin Rev., 36 (2017) 210–221.
  47. S.A. Mousavi, H. Janjani, Antibiotics adsorption from aqueous solutions using carbon nanotubes: a systematic review, Toxin Rev., (2018) 1–12.
  48. C.C. Lin, M.S. Wu, Degradation of ciprofloxacin by UV/S2O82− process in a large photoreactor, J. Photochem. Photobiol., 285 (2014) 1–6.
  49. E.A. Serna-Galvis, F. Ferraro, J. Silva-Agredo, R.A. Torres-Palma, Degradation of highly consumed fluoroquinolones, penicillins and cephalosporins in distilled water and simulated hospital wastewater by UV254 and UV254/persulfate processes, Water Res., 122 (2017) 128–138.
  50. M. Mahdi-Ahmed, S. Chiron, Ciprofloxacin oxidation by UV-C activated peroxymonosulfate in wastewater, J. Hazard. Mater., 265 (2014) 41–46.
  51. H. Guo, T. Ke, N. Gao, Y. Liu, X. Cheng, Enhanced degradation of aqueous norfloxacin and enrofloxacin by UV-activated persulfate: Kinetics, pathways and deactivation, Chem. Eng. J., 316 (2017) 471–480.
  52. J.S. Ye, J. Liu, H.S Ou, L.l. Wang, Degradation of ciprofloxacin by 280 nm ultraviolet-activated persulfate: Degradation pathway and intermediate impact on proteome of Escherichia coli, Chemosphere, 165 (2016) 311–319.
  53. Y. Liu, X. He, Y. Fu, D.D. Dionysiou, Kinetics and mechanism investigation on the destruction of oxytetracycline by UV-254 nm activation of persulfate, J. Hazard. Mater., 305 (2016) 229–239.
  54. Y. Yang, X. Lu, J. Jiang, J. Ma, G. Liu, Y. Cao, W. Liu, J. Li, S. Pang, X. Kong, C. Luo, Degradation of sulfamethoxazole by UV, UV/H2O2 and UV/persulfate (PDS): Formation of oxidation products and effect of bicarbonate, Water Res., 118 (2017) 196–207.
  55. C. Cui, L. Jin, Q. Han, K. Lin, S. Lu, D. Zhang, G. Cao, Removal of trace level amounts of twelve sulfonamides from drinking water by UV-activated peroxymonosulfate, Sci. Total Environ., 572 (2016) 244–251.
  56. X. He, S.P. Mezyk, I. Michael, D. Fatta-Kassinos, D.D. Dionysiou, Degradation kinetics and mechanism of β-lactam antibiotics by the activation of H2O2 and Na2S2O8 under UV-254 nm irradiation, J. Hazard. Mater., 279 (2014) 375–383.
  57. Y.q. Gao, N.y. Gao, Y. Deng, Y-q. Yang, Y. Ma. Ultraviolet (UV) light-activated persulfate oxidation of sulfamethazine in water, Chem. Eng. J., 195 (2012) 248–253.
  58. X. Ao, W. Liu., Degradation of sulfamethoxazole by medium pressure UV and oxidants: Peroxymonosulfate, persulfate, and hydrogen peroxide, Chem. Eng. J., 313 (2017) 629–637.
  59. C. Tan, D. Fu, N. Gao, Q. Qin, Y. Xu, H. Xiang, Kinetic degradation of chloramphenicol in water by UV/persulfate system, J. Photochem. Photobiol., 332 (2017) 406–412.
  60. A. Ghauch, A. Baalbaki, M. Amasha, R. El Asmar, O. Tantawi, Contribution of persulfate in UV-254 nm activated systems for complete degradation of chloramphenicol antibiotic in water, Chem. Eng. J., 317 (2017) 1012–1025.
  61. I. Michael-Kordatou, M. Iacovou, Z. Frontistis, E. Hapeshi, D. Dionysiou, D. Fatta-Kassinos, Erythromycin oxidation and ERY-resistant Escherichia coli inactivation in urban wastewater by sulfate radical-based oxidation process under UV-C irradiation, Water Res., 85 (2015) 346–358.
  62. S. Norzaee, E. Bazrafshan, B. Djahed, F. Kord Mostafapour, R. Khaksefidi, UV activation of persulfate for removal of penicillin G antibiotics in aqueous solution, SCI World J., (2017) 1–6.
  63. L. Ismail, C. Ferronato, L. Fine, F. Jaber, J.M. Chovelon, Elimination of sulfaclozine from water with SO4− radicals: evaluation of different persulfate activation methods, Appl. Catal. B., 201 (2017) 573–581.
  64. Y-q. Gao, N-y. Gao, Y. Deng, D-q. Yin, Y-s. Zhang, Degradation of florfenicol in water by UV/Na2S2O8 process, Environ. Sci. Pollut. Res., 22 (2015) 8693–8701.
  65. F. Azadbakht, A. Esrafili, M. Yeganeh Badi, J. Sajedifar, M. Amiri, M. Gholami, Efficiency of persulfate-based advanced oxidation process (UV/Na2S2O8) in removal of metronidazole from aqueous solutions, J. Mazandaran Univ. Med. Sci., 154 (2017) 119–129.
  66. M.H. Rasoulifard, H. Majidzadeh, F.T. Demneh, E. Babaei, M.H. Rasoulifard, Photocatalytic degradation of tylosin via ultraviolet-activated persulfate in aqueous solution, Int. J. Ind. Chem., 3 (2012) 1–5.
  67. A.A. Zarei, P. Tavassoli, E. Bazrafshan, Evaluation of UV/S2O8 process efficiency for removal of metronidazole (MNZ) from aqueous solutions, Wat. Sci. Tech., 1 (2018) 126–133.
  68. F. Wang, W. Wang, S. Yuan, W. Wang, Z-H. Hu, Comparison of UV/H2O2 and UV/PS processes for the degradation of thiamphenicol in aqueous solution, J. Photochem. Photobiol., 348 (2017) 79–88.
  69. X. Ao, W. Liu, W. Sun, M. Cai, Z. Ye, C. Yang, Z. Lu, C. Li, Medium pressure UV-activated peroxymonosulfate for ciprofloxacin degradation: Kinetics, mechanism, and genotoxicity, Chem. Eng. J., 345 (2018) 87–97.
  70. M.P. Yadav, N. Neghi, M. Kumar, G.K. Varghese, Photocatalytic-oxidation and photo-persulfate-oxidation of sulfadiazine in a laboratory-scale reactor: Analysis of catalyst support, oxidant dosage, removal-rate and degradation pathway, J. Environ. Manage., 222 (2018) 164–173.
  71. N. Neghi, N.R. Krishnan, M. Kumar, Analysis of metronidazole removal and micro-toxicity in photolytic systems: Effects of persulfate dosage, anions and reactor operation-mode, J. Environ. Chem. Eng., 6 (2018) 754–561.
  72. X. Zhou, D. Liu, Y. Zhang, J. Chen, H. Chu, Y. Qian. Degradation mechanism and kinetic modeling for UV/peroxydisulfate treatment of penicillin antibiotics, Chem. Eng. J., 341 (2018) 93–101.
  73. Y. Ji, Y. Yang, L. Zhou, L. Wang, J. Lu, C. Ferronato, J.M. Chovelon, Photodegradation of sulfasalazine and its human metabolites in water by UV and UV/peroxydisulfate processes, Water Res., 133 (2018) 299–309.
  74. R. Zhang, Y. Yang, C-H. Huang, L. Zhao, P. Sun, Kinetics and modeling of sulfonamide antibiotic degradation in wastewater and human urine by UV/H2O2 and UV/PDS, Water Res., 103 (2016) 283–292.
  75. V.M.F. Frade, M. Dias, A.C.S.C Teixeira, M.S.A. Palma, Environmental contamination by fluoroquinolones, Braz. J. Pharm. Sci., 50 (2014) 41–54.
  76. W. Baran, E. Adamek, J. Ziemiańska, A. Sobczak, Effects of the presence of sulfonamides in the environment and their influence on human health, J. Hazard. Mater., 196 (2011) 1–15.
  77. W. Zhang, S. Zhou, J. Sun, X. Meng, J. Luo, D. Zhou, J. Crittenden, Impact of chloride ions on UV/H2O2 and UV/persulfate advanced oxidation processes, Environ. Sci. Technol., 52 (2018) 7380–7389.
  78. Y. Liu, X. He, X. Duan, Y. Fu, D. Fatta-Kassinos, D.D. Dionysiou, Significant role of UV and carbonate radical on the degradation of oxytetracycline in UV-AOPs: kinetics and mechanism, Water Res., 95 (2016) 195–204.
  79. C. Liang, Z-S. Wang, C.J. Bruell, Influence of pH on persulfate oxidation of TCE at ambient temperatures, Chemosphere, 66 (2007) 106–113.
  80. M. Ahmadian, M. Pirsaheb, H. Janjani, H. Hossaini, Ultraviolet activated persulfate based AOP for MTBE decomposition in aqueous solution, Desal. Water Treat., 161 (2019) 269–274.