1. K.J. Choi, S.G. Kim, S.H. Kim, Removal of antibiotics by coagulation and granular activated carbon filtration, J. Hazard. Mater., 151 (2008) 38–43.
  2. D. Zhang, X. Zhang , Z. Meng, Y. Cai, strong adsorption of chlorotetracycline on magnetite nanoparticles, J. Hazard. Mater., 192 (2011) 1088–1093.
  3. K. Kummerer, Antibiotics in the aquatic environment - a review. Part I, Chemosphere, 75 (2009) 417–434.
  4. Y. Gao, Y.L.L. Zhang, H. Huang, J. Hu, S.M. Shah, X. Su, Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide, J. Colloid Interface Sci., 368 (2012) 540–546.
  5. S.J. Khan, J.E. Ongerth, Modelling of pharmaceutical residues in Australian sewage by quantities of use and fugacity calculations, Chemosphere, 54 (2004) 355–367.
  6. J. Rivas, A. Encinas, F. Beltran, N, Grahan, Application of advanced oxidation processes to doxycycline and norfloxacin removal from water, J. Environ. Sci. Health A. Tox. Hazard. Subst. Environ. Eng., 46 (2011) 944–951.
  7. A.J. Watkinson, A.J. Murbyd, D.W. Kolpine, S.D. Costanzo, The occurrence of antibiotics in an urban watershed: from wastewater to drinking water, Sci. Total Environ., 407 (2009) 2711–2723.
  8. B. Halling-Sorenson, S.N. Nielsen, P.F. Lanzky, F. Ingerslev, L.U. Holten, H.C. Tzhoft, S.E. Jorgensen, Occurrence, fate and effect of pharmaceutical substances in the environment-a review, Chemosphere, 36 (1998) 357–393.
  9. M. Nelson, A. Dinardo, J. Hochberg, G. Armelagos. Brief communication: Mass spectroscopic characterization of tetracycline in the skeletal remains of an ancient population from Sudanese Nubia 350-550 CE, Am. J. Phys. Anthropol., 143 (2010) 151–154.
  10. C. Bouki, D. Venieri, E. Diamadopoulos, Detection and fate of antibiotic resistant bacteria in wastewater treatment plants, A review, J. Eco. Toxicol. Environ. Saf., 91 (2013) 1–9.
  11. L. Rizzo, C. Manaia, C. Merlin, Urban wastewater treatment plants as hot spots for antibiotic resistant bacteria and genes spread into the environment, A review, Sci. Total. Environ., 447 (2013) 345–360.
  12. Antibiotics in Manure and Soil-A Grave Threat to Human and Animal Health, Policy Paper 43; National Academy of Agriculture Science: New Delhi, India, 20 (2010) 20.
  13. A.L. Batt, D.D. Snow, D.S Aga, Occuurrence of sulfonamide antimicrobial in private water wells in Washington country, Idaho, USA, Chemosphere, 64 (2006) 1963–1971.
  14. M. Jafari, F. seyed, Aghmari, G. Khaghanic, Batch adsorption of cephalosporins antibiotics from aqueous solution by means of multi-walled carbon nanotubes, World Appl. Sci. J., 14 (2011) 1642–1650.
  15. J. Gao, J.A. Pedersen, Adsorption of sulfonamide antimicrobial agents to clay minerals, Environ. Sci. Technol., 39(24) (2005) 9509–9516.
  16. J.W. Peterson, L.J. Petrasky, M.D. Seymourc, R.S. Burkharta, A.B. Schuilinga, Adsorption and breakdown of penicillin antibiotic in the presence of titanium oxide nanoparticles in water, Chemosphere, 87(8) (2012) 911–917.
  17. E.A. Serna-Galvis, J. Silva-Agredo, A.L. Giraldo-Aguirre, O.A. Florez-Acosta, R.A. Torres-Palma, High frequency ultrasound as a selective advanced oxidation process to remove penicillinic antibiotics and eliminate its antimicrobial activity from water, Ultrason. Sonochem., 31 (2016) 276–283.
  18. Y. Liu, X. He, Y. Fu, D.D. Dionysiou, Degradation kinetics and mechanism of oxytetracycline by hydroxyl radical-based advanced oxidation processes, Chem. Eng. J., 284 (2016) 1317–1327.
  19. D. Barlak, F. MostafapourK, Batch equilibrium,kinetics and thermodynamics study of sulfamethaxole antibiotics onto Azolla filiculoides as anovel biosorbent, Br. J. Pharmacol., 13(2) (2016) 1–14.
  20. W. Zhang, G. He, P. Gao, G. Chen, Development and characterization of composite nanofiltration membranes and their application in concentration of antibiotics, Sep. Sci. Technol., 30 (2003) 27–35.
  21. X.D. Zhu, Y.J. Wang , R.J. Sun, D.M. Zhou, Photo catalytic degradation of tetracycline in aqueous solution by nanosized TiO2, Chemosphere, 92 (2013) 925–932.
  22. D. Balarak, H. Azarpira, Rice husk as a Biosorbent for antibiotic metronidazole removal: Isotherm studies and model validation, Int. J. Chem. Pharma. Tech. Res., 9(7) (2016) 566–573.
  23. R. Ocampo-Péerez, J. Rivera-Utrilla, C. Gómez-Pacheco, M. Sánchez-Polo, J.J. López-Peñalver, Kinetic study of tetracycline adsorption on sludge-derived adsorbents in aqueous phase, Chem. Eng. J., 213 (2012) 88–96.
  24. J.R. Kana, A. Teguia, J. Tchoumboue, Effect of charcoal from Canarium schweinfurthii kernel and from maize cob on the production performances of broiler chickens fed a diet containing peanut cake as main plant protein source, Int. Network for Family Poultry Develop., 19 (2010) 1–52.
  25. H. Li, D. Zhang, X. Han, B. Xing, Adsorption of antibiotic ciprofloxacin on carbon nanotubes; pH dependence and thermodynamics, Chemosphere, 95 (2014) 150–155.
  26. M. Zahoor, Magnetic adsorbent used in combination with ultra filtration membrane for the removal of surfactants from water, Desal. Water Treat., 52 (2014) 3104–3114.
  27. M.M.U. Khattak, M. Zahoor, B. Muhammad, F.A. Khan, R. Ullah, N.M. AbdEI-Salam, Removal of heavy metals from drinking water by magnetic carbon nanostructures prepared from biomass, J. Nanomat., 2017 (2017) 1–10.
  28. M. Zahoor, Removal of pesticides from water using granular activated carbon and ultra filtration membrane a pilot plant study, J. Encap. Adsorption Sci., 3 (2013) 71–76.
  29. L.H. Wu, Nanofiltration membrane-a new separating material and its application in pharmaceutical industry, Membr. Sci. Tech., 17(5) (1997) 11–14.
  30. K.V. Plakas, A.J. Karabelas, Removal of pesticides from water by NF and RO membranes-a review, Desalination, 287 (2012).
  31. K. Kosutic, D. Dolar, D. Asperger, B. Kunst, Removal of antibiotics from a model wastewater by RO/NF membranes, Sep. Pur. Technol., 53 (2007) 244–249.
  32. M. Zahoor, M. Mahramanlioglu, Adsorption of Imidacloprid on powdered activated carbon and magnetic activated carbon, Chem. Biochem. Eng. Q., 25 (2011) 55–63.
  33. M. Mahramanlioglu, M. Zahoor, M. Kizilcikli, Removal of phenol red by activated and magnetic activated carbon, Fresenius Environ. Bull., 19 (2010) 911–918.
  34. X. Bao, Z. Qiang, J.H. Chang, W. Ben, J. Qu, Synthesis of carbon coated magnetic nanoparticles (Fe3O4/C) and its applications for sulfonamide antibiotics removal from water, J. Environ. Sci., 26 (2014) 962–969.
  35. D. Tang, Z. Zheng, K. Lin, J. Zhang, Adsorption of p-nitrophenol from aqueous solutions onto activated carbon fiber, J. Hazard. Mater., 143 (2007) 49–56.
  36. M. Moyo, E. Mutare, F. Chigondo, B.C. Nyamunda, Removal of phenol from aqueous solution by adsorption on yeast Saccharomyces cerevisiae, Int. J. Res. Rev. Appl. Sci., 11(3) (2012) 486–494.
  37. T.S. Fasoto, J.O. Arawande, A. Akinnusotu, Adsorption of zinc and chromium ions from aqueous solution onto bagasse, Int. J. Modern Chem., 6(1) (2014) 28–47.
  38. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc., 40 (1918) 1361–1403.
  39. H. Freundlich, Uber die adsorption in losungen (adsorption in solution), Z. Phys. Chem., 57 (1906) 384–470.
  40. C. Perk, J.B. Joo, J. Yi, Adsorption of acid dyes using poly electrolyte impregnated mesoporous silica, Korean J. Chem. Eng., 22 (2005) 276–280.
  41. E. Malkoc, Y. Nuhoglu, Determination of kinetic and equilibrium parameters of the batch adsorption of Cr(VI) onto waste corn of Quercus ithaburensis, Chem. Eng. Prog., 46 (2007) 1020–1029.
  42. Y.S. Ho, J.F. Porter, G. Mckay, Equilibrium isotherms studies for the sorption of divalent metal ions onto peat: copper, nickel and lead single component systems, Water Air Soil Pollut., 141 (2002) (2002) 1–33.
  43. A.U. Itodo, H.U. Itodo, Sorption energies estimation using Dubinin-Radushkevich and Temkin adsorption isotherms, Life Sci. J., 7 (2010) 31–39.
  44. S. Lagregren, About the theory of so-called adsorption of soluble substances, Kungliga Svenska Vetenska psaka demiens Handlinga, 24 (1898) 1–39.
  45. Y.S. Ho, G. McKay, Pseudo-second-order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  46. R.C. Dalal, Desorption of phosphate by anion exchange resin, Commun. Soil Sci. Plant Anal., 5 (1974) 531–538.
  47. W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon from solution, journal of sanitary engineering division, J. Amer. Soc. Chem. Eng., 89 (1963) 31–59.
  48. N. Kannan, A. Vanangamudi, A study on removal of chromium VI by adsorption on lignite coal, Indian J. Environ. Prot., 114 (1991) 241–245.
  49. D. Wu, H. Li, S. Liao, X. Sun, H. Peng, D. Zhang, B. Pan, Co-sorption of ofloxacin and Cu(II) in soils before and after organic matter removal, Sci. Total Environ., 481 (2014) 209–216.
  50. C.E. Lin, Y.J. Deng, W.S. Liao, S.W. Sun, W.Y. Lin, C.C. Chem, Electrophoretic behavior and pKa determination of quinolones with a piperazinyl substituent by capillary zone electrophoresis, J. Chrom., 1051 (2004) 283–290.
  51. M. Crespo-Alonso, V.N. Nuruchi, R. Biesuz, G. Alberti, N. Spano, M.I. Pilo, G. Sanna, Biomass against emerging pollution in wastewater: ability of cork for the removal ofloxacin from aqueous solutions at different pH, J. Environ. Chem. Eng., (2013) 1199–1204.
  52. V.V. Goud, K.M. Mohanty, M.S. Rao, N.S Jayakumar, Phenol removal from aqueous solutions using tamarind nut shell activated carbon: batch and column study, Chem. Eng. Technol., 28 (2005) 814–821.
  53. M. Maheshwari, R.K. Vyas, M. Sharma, Kinetics, equilibrium and thermodynamics of ciprofloxacin hydrochloride removal by adsorption on coal fly ash and activated alumina, Desal. Water Treat., 51 (2013) 7241–7254.