1. A.V.F. Sako, M.D. Dolzan, G.A. Micke, Fast and sensitive method to determine parabens by capillary electrophoresis using automatic reverse electrode polarity stacking mode: application to hair samples, Anal. Bioanal. Chem., 407 (2015) 7333–7339.
  2. Y. Okamoto, T. Hayashi, S. Matsunami, K. Ueda, N. Kojima, Combined activation of methyl paraben by light irradiation and esterase metabolism toward oxidative DNA damage, Chem. Res. Toxicol., 21 (2008) 1594–1599.
  3. T. Heberer, Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data, Toxicol. Lett., 131 (2002) 5–17.
  4. Z. Pei, L. Li, L. Sun, S. Zhang, X.-q. Shan, S. Yang, B. Wen, Adsorption characteristics of 1,2,4-trichlorobenzene, 2,4,6-trichlorophenol, 2-naphthol and naphthalene on graphene and graphene oxide, Carbon, 51 (2013) 156–163.
  5. J. Zhao, Z. Wang, Q. Zhao, B. Xing, Adsorption of phenanthrene on multilayer graphene as affected by surfactant and exfoliation, Environ. Sci. Technol., 48 (2014) 319–331.
  6. W. Yuan, J. Chen, G. Shi, Nanoporous graphene materials, Mater. Today, 17 (2014) 77–85.
  7. K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, B.H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature, 457 (2009) 706–710.
  8. Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications, Adv. Mater., 22 (2010) 3906–3924.
  9. S. Park, R.S. Ruoff, Chemical methods for the production of graphenes, Nat. Nanotechnol., 4 (2009) 217–424.
  10. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon, 45 (2007) 1558–1565.
  11. D.V. Kosynkin, A.L. Higginbotham, A. Sinitskii, J.R. Lomeda, A. Dimiev, B.K. Price, J.M. Tour, Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons, Nature, 458 (2009) 872–876.
  12. A.H. Wazir, I.W. Kundi, Synthesis of graphene nano sheets by the rapid reduction of electrochemically exfoliated graphene oxide induced by microwaves, J. Chem. Soc. Pak., 38 (2016) 11–16.
  13. M.T. Tajabadi, W.J. Basirun, F. Lorestani, R. Zakaria, S. Baradaran, Y.M. Amin, M.R. Mahmoudian, M. Rezayi, M. Sookhakian, Nitrogen-doped graphene-silver nanodendrites for the nonenzymatic detection of hydrogen peroxide, Electrochim. Acta, 151 (2015) 126–133.
  14. F. Chen, L. Guo, X. Zhang, Z.Y. Leong, S. Yang, H.Y. Yang, Nitrogen-doped graphene oxide for effectively removing boron ions from seawater, Nanoscale, 9 (2017) 326–833.
  15. S. Zhou, N. Liu, Z. Wang, J. Zhao, Nitrogen-doped graphene on transition metal substrates as efficient bifunctional catalysts for oxygen reduction and oxygen evolution reactions, ACS Appl. Mater. Interfaces, 9 (2017) 22578–22587.
  16. Q. Chen, X. Yang, Pyridinic nitrogen doped nanoporous graphene as desalination membrane: molecular simulation study, J. Membr. Sci., 496 (2015) 108–117.
  17. Y. Zhao, C. Zhang, T. Liu, R. Fan, Y. Sun, H. Tao, J. Xue, Low temperature green synthesis of sulfur-nitrogen co-doped graphene as efficient metal-free catalysts for oxygen reduction reaction, Int. J. Electrochem. Sci., 12 (2017) 3537–3548.
  18. P. Wu, Y. Qian, P. Du, H. Zhang, C. Cai, Facile synthesis of nitrogen-doped graphene for measuring the releasing process of hydrogen peroxide from living cells, J. Mater. Chem., 22 (2012) 6402–6412.
  19. M. Khan, M.N. Tahir, S.F. Adil, H.U. Khan, M.R.H. Siddiqui, A.A. Al-Warthan, W. Tremel, Graphene based metal and metal oxide nanocomposites: synthesis, properties and their applications, J. Mater. Chem. A, 3 (2015) 18753–18808.
  20. C. Sun, B. Wen, B. Bai, Recent advances in nanoporous graphene membrane for gas separation and water purification, Sci. Bull., 60 (2015) 1807–1823.
  21. R. Zhang, X.-B. Cheng, C.-Z. Zhao, H.-J. Peng, J.-L. Shi, J.-Q. Huang, J. Wang, F. Wei, Q. Zhang, Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth, Adv. Mater., 28 (2016) 2155–2166.
  22. L. Liu, X. Guo, R. Tallon, X. Huang, J. Chen, Highly porous N-doped graphene nanosheets for rapid removal of heavy metals from water by capacitive deionization, Chem. Commun., 53 (2017) 881–884.
  23. X. Wang, P. Tang, C. Ding, X. Cao, S. Yuan, X. Zuo, X. Deng, Simultaneous enhancement of adsorption and peroxymonosulfate activation of nitrogen-doped reduced graphene oxide for bisphenol A removal, J. Environ. Chem. Eng., 5 (2017) 4291–4297.
  24. P. Janik, B. Zawisza, E. Talik, R. Sitko, Selective adsorption and determination of hexavalent chromium ions using graphene oxide modified with amino silanes, Microchim. Acta, 185 (2018) 117–124.
  25. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc., 40 (1918) 1361–1403.
  26. H.M.F. Freundlich, Uber die adsorption in Losungen [Over the adsorption in solution], Z. Phys. Chem., 57 (1906) 385–470.
  27. M.I. Temkin, V. Pyzhev, Kinetics of ammonia synthesis on promoted iron catalysts, Acta Phys. Chim. USSR, 12 (1940) 217–222.
  28. M.M. Dubinin, L.V. Radushkevich, Equation of the characteristic curve of the activated charcoal, Chem. Zentralbl., 1 (1947) 870–875.
  29. S. Lagergern, About the theory of so-called adsorption of soluble substances, K. Sven. Vetenskapsakad. Handl., 24 (1898) 1–39.
  30. G. Mckay, Y.S. Ho, Pseudo-second order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  31. R.-S. Juang, M.-L. Chen, Application of the Elovich equation to the kinetics of metal sorption with solvent-impregnated resins, Ind. Eng. Chem. Res., 36 (1997) 813–820.
  32. W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon from solution, J. Sanitary Eng. Div., 89 (1963) 31–59.
  33. T.C. Achee, W. Sun, J.T. Hope, S.G. Quitzau, C.B. Sweeney, S.A. Shah, T. Habib, M.J. Green, High-yield scalable graphene nanosheet production from compressed graphite using electrochemical exfoliation, Sci. Rep., 8 (2018) 14525–14532.
  34. P. Yu, S.E. Lowe, G.P. Simon, Y.L. Zhong, Electrochemical exfoliation of graphite and production of functional graphene, Curr. Opin. Colloid Interface Sci., 20 (2015) 329–338.
  35. Z. Aksu, E. Kabasakal, Batch adsorption of 2,4-dichlorophenoxyacetic acid (2,4-D) from aqueous solution by granular activated carbon, Sep. Purif. Technol., 35 (2004) 223–240.
  36. M. Forte, L. Mita, R. Perrone, S. Rossi, M. Argirò, D.G. Mita, M. Guida, M. Portaccio, T. Godievargova, Y. Ivanov, M.T. Tamer, A.M. Omer, M.S. Mohy Eldin, Removal of methylparaben from synthetic aqueous solutions using polyacrylonitrile beads: kinetic and equilibrium studies, Environ. Sci. Pollut. Res., 24 (2017) 1270–1282.
  37. S. Yu, X. Wang, W. Yao, J. Wang, Y. Ji, Y. Ai, A. Alsaedi, T. Hayat, X. Wang, Macroscopic, spectroscopic, and theoretical investigation for the interaction of phenol and naphthol on reduced graphene oxide, Environ. Sci. Technol., 51 (2017) 3278–3286.
  38. L. Dao, B. Xing, Adsorption of phenolic compounds by carbon nanotubes: role of aromaticity and substitution of hydroxyl groups, Environ. Sci. Technol., 42 (2008) 7254–7259.
  39. H.-W. Chen, C.-S. Chiou, S.-H. Chang, Comparison of methylparaben, ethylparaben and propylparaben adsorption onto magnetic nanoparticles with phenyl group, Powder Technol., 311 (2017) 426–431.
  40. H. Wang, Y. Chen, Y. Wei, A novel magnetic calcium silicate/graphene oxide composite material for selective adsorption of acridine orange from aqueous solutions, RSC Adv., 6 (2016) 34770–34781.
  41. B.H. Hameed, A.A. Rahman, Removal of phenol from aqueous solutions by adsorption onto activated carbon prepared from biomass material, J. Hazard. Mater., 160 (2008) 576–581.
  42. S. Yu, X. Wang, Y. Ai, X. Tan, T. Hayat, W. Hu, X. Wang, Experimental and theoretical studies on competitive adsorption of aromatic compounds on reduced graphene oxides, J. Mater. Chem. A, 4 (2016) 5654–5662.