1. M.W. Shahzad, K.C. Ng, K. Thu, B.B. Saha, W.G. Chun, Multi effect desalination and adsorption desalination (MEDAD): a hybrid desalination method, Appl. Therm. Eng., 72 (2014) 289–297.
  2. A. Mabrouk, A. Abotaleb, F. Tahir, M. Darwish, R. Aini, M. Koc, A. Abdelrashid, High Performance MED Desalination Plants Part I: Novel Design MED Evaporator, IDA 2017 World Congress Water Reuse Desalination, Sao Paulo, Brazil, 2017.
  3. A. Mabrouk, A. Abotaleb, H. Abdelrehim, F. Tahir, M. Koc, A. Abdelrashid, A. Nasralla, High Performance MED Desalination Plants, Part II: Novel Integration MED-Absorption Vapor Compression, IDA 2017 World Congress Water Reuse Desalination, Sao Paulo, Brazil, 2017.
  4. F.W. Adams, G. Broughton, A.L. Conn, A horizontal film-type cooler: film coefficients of heat transmissions, Ind. Eng. Chem., 28 (1936) 537–541.
  5. A.M.I. Mohamed, Flow behavior of liquid falling film on a horizontal rotating tube, Exp. Therm. Fluid Sci., 31 (2007) 325–332.
  6. H. Hou, Q. Bi, X. Zhang, Numerical simulation and performance analysis of horizontal-tube falling-film evaporators in seawater desalination, Int. Commun. Heat Mass Transf., 39 (2012) 46–51.
  7. M.W. Shahzad, M. Burhan, L. Ang, K.C. Ng, Adsorption Desalination—Principles, Process Design, and Its Hybrids for Future Sustainable Desalination, Emerging Technologies for Sustainable Desalination Handbook, Elsevier B.V., pp. 3–34.
  8. A.N. Mabrouk, H.E.S. Fath, Technoeconomic study of a novel integrated thermal MSF–MED desalination technology, Desalination, 371 (2015) 115–125.
  9. I.S. Al-Mutaz, Coupling of a nuclear reactor to hybrid RO-MSF desalination plants, Desalination, 157 (2003) 259–268.
  10. G. Iaquaniello, A. Salladini, A. Mari, A.A. Mabrouk, H.E.S. Fath, Concentrating solar power (CSP) system integrated with MED–RO hybrid desalination, Desalination, 336 (2014) 121–128.
  11. M. Darwish, Desalination Engineering, 1st ed., Balaban Desalination Publications, MA, USA, 2015.
  12. F. Tahir, M. Atif, M.A. Antar, The Effect of Fouling on Performance and Design Aspects of Multiple-Effect Desalination Systems, Recent Progress in Desalination, Environmental and Marine Outfall Systems, Springer International Publishing, Cham, 2015, pp. 35–52.
  13. A.S. Nafey, H.E.S. Fath, A.A. Mabrouk, Thermo-economic investigation of multi effect evaporation (MEE) and hybrid multi effect evaporation—multi stage flash (MEE-MSF) systems, Desalination, 201 (2006) 241–254.
  14. A.S. Nafey, H.E.S. Fath, A.A. Mabrouk, A new visual package for design and simulation of desalination processes, Desalination, 194 (2006) 281–296.
  15. J. Mitrovic, Influence of Tube Spacing and Flow Rate on Heat Transfer from a Horizontal Tube to a Falling Liquid Film, 8th International Heat Transfer Conference, San Francisco, 1986, pp. 1949–1956.
  16. J.T. Rogers, S.S. Goindi, Experimental laminar falling film heat transfer coefficients on a large diameter horizontal tube, Can. J. Chem. Eng., 67 (1989) 560–568.
  17. Y. Fujita, M. Tsutsui, Experimental investigation of falling film evaporation on horizontal tubes, Heat Transf. Jpn. Res., 27 (1998) 609–618.
  18. J.-F. Roques, J.R. Thome, Falling films on arrays of horizontal tubes with R-134a, Part I: Boiling heat transfer results for four types of tubes, Heat Transf. Eng., 28 (2007) 398–414.
  19. J.-F. Roques, J.R. Thome, Falling films on arrays of horizontal tubes with R-134a, Part II: Flow visualization, onset of dryout, and heat transfer predictions, Heat Transf. Eng., 28 (2007) 415–434.
  20. J. Fernández-Seara, Á.Á. Pardiñas, Refrigerant falling film evaporation review: description, fluid dynamics and heat transfer, Appl. Therm. Eng., 64 (2014) 155–171.
  21. Y. Zheng, X. Ma, Y. Li, R. Jiang, K. Wang, Z. Lan, Q. Liang, Experimental study of falling film evaporation heat transfer on superhydrophilic horizontal-tubes at low spray density, Appl. Therm. Eng., 111 (2017) 1548–1556.
  22. J. Mitrovic, Flow structures of a liquid film falling on horizontal tubes, Chem. Eng. Technol., 28 (2005) 684–694.
  23. X. Hu, A.M. Jacobi, The intertube falling film: Part 1 — Flow characteristics, mode transitions, and hysteresis, J. Heat Transf., 118 (1996) 616.
  24. J.F. Roques, V. Dupont, J.R. Thome, Falling film transitions on plain and enhanced tubes, J. Heat Transf., 124 (2002) 491.
  25. X. Zeng, M.-C. Chyu, D.Z.H. Ayub, Evaporation heat transfer performance of nozzle-sprayed ammonia on a horizontal tube, ASHRAE Trans., 101 (1995) 136–149.
  26. J. Hou, H. Cheng, D. Wang, X. Gao, C. Gao, Experimental investigation of low temperature distillation coupled with spray evaporation, Desalination, 258 (2010) 5–11.
  27. X. Zeng, M.-C. Chyu, Z.H. Ayub, Experimental investigation on ammonia spray evaporator with triangular-pitch plain-tube bundle, Part I: tube bundle effect, Int. J. Heat Mass Transf., 44 (2001) 2299–2310.
  28. Q. Chen, K. Thu, T.D. Bui, Y. Li, K.C. Ng, K.J. Chua, Development of a model for spray evaporation based on droplet analysis, Desalination, 399 (2016) 69–77.
  29. C. Hirt, B. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys., 39 (1981) 201–225.
  30. F. Tahir, A. Mabrouk, M. Koc, CFD Analysis of Falling Film Wettability in MED Desalination Plants, Qatar Foundation Annual Research Conference Proceedings, 2018, p. EEPD650.
  31. Q. Qiu, X. Zhang, S. Quan, X. Zhu, S. Shen, 3D numerical study of the liquid film distribution on the surface of a horizontaltube falling-film evaporator, Int. J. Heat Mass Transf., 124 (2018) 943–952.
  32. Q. Qiu, X. Zhu, L. Mu, S. Shen, An investigation on the falling film thickness of sheet flow over a completely wetted horizontal round tube surface, Desal. Wat. Treat., 57 (2016) 16277–16287.
  33. M. Fiorentino, G. Starace, Numerical investigations on twophase flow modes in evaporative condensers, Appl. Therm. Eng., 94 (2016) 777–785.
  34. A. Baloch, H. Ali, F. Tahir, Transient Analysis of Air Bubble Rise in Stagnant Water Column Using CFD, ICTEA International Conference Thermal Engineering, 2018.
  35. R. Gupta, D.F. Fletcher, B.S. Haynes, On the CFD modelling of Taylor flow in microchannels, Chem. Eng. Sci., 64 (2009) 2941–2950.
  36. R.J.G. Lopes, R.M. Quinta-Ferreira, Assessment of CFD−VOF method for trickle-bed reactor modeling in the catalytic wet oxidation of phenolic wastewaters, Ind. Eng. Chem. Res., 49 (2010) 2638–2648.
  37. T.H. Nigim, J.A. Eaton, CFD prediction of the flashing processes in a MSF desalination chamber, Desalination, 420 (2017) 258–272.
  38. J. Brackbill, D. Kothe, C. Zemach, A continuum method for modeling surface tension, J. Comput. Phys., 100 (1992) 335–354.
  39. W.H. Lee, A Pressure Iteration Scheme for Two-Phase Modeling, Technical Report LA-UR 79-975, Los Alamos Scientific Laboratory, Los Alamos, New Mexico, 1979.
  40. A. Inc., Ansys Fluent Theory Guide, in: 15.0, SAS IP, Inc., 2013, pp. 591–593.
  41. E. Da Riva, D. Del Col, Numerical simulation of laminar liquid film condensation in a horizontal circular minichannel, J. Heat Transf., 134 (2012) 051019.
  42. W. Nusselt, Die oberflachenkondensation des wasserdamphes, VDI-Zs, 60 (1916) 541–546.
  43. S.M. Hosseinnia, M. Naghashzadegan, R. Kouhikamali, CFD simulation of water vapor absorption in laminar falling film solution of water-LiBr — drop and jet modes, Appl. Therm. Eng., 115 (2017) 860–873.
  44. H. Ding, P. Xie, D. Ingham, L. Ma, M. Pourkashanian, Flow behaviour of drop and jet modes of a laminar falling film on horizontal tubes, Int. J. Heat Mass f., 124 (2018) 929–942.
  45. C.Y. Zhao, W.T. Ji, P.H. Jin, Y.J. Zhong, W.Q. Tao, Hydrodynamic behaviors of the falling film flow on a horizontal tube and construction of new film thickness correlation, Int. J. Heat Mass Transf., 119 (2018) 564–576.
  46. A. Bakker, Applied Computational Fluid Dynamics, CFD Lect., (2006) 1–35. Available at:
  47. Y. Zhou, Z. Cai, Z. Ning, M. Bi, Numerical simulation of doublephase coupled heat transfer process of horizontal-tube falling film evaporation, Appl. Therm. Eng., 118 (2017) 33–40.
  48. M. Li, Y. Lu, S. Zhang, Y. Xiao, A numerical study of effects of counter-current gas flow rate on local hydrodynamic characteristics of falling films over horizontal tubes, Desalination, 383 (2016) 68–80.
  49. F. Sun, S. Xu, Y. Gao, Numerical simulation of liquid falling film on horizontal circular tubes, Front. Chem. Sci. Eng., 6 (2012) 322–328.
  50. C. Qi, H. Feng, H. Lv, C. Miao, Numerical and experimental research on the heat transfer of seawater desalination with liquid film outside elliptical tube, Int. J. Heat Mass Transf., 93 (2016) 207–216.
  51. L. Yang, Y. Liu, Y. Yang, S. Shen, Microscopic mechanisms of heat transfer in horizontal-tube falling film evaporation, Desalination, 394 (2016) 64–71.
  52. Q. Qiu, X. Zhu, L. Mu, S. Shen, Numerical study of falling film thickness over fully wetted horizontal round tube, Int. J. Heat Mass Transf., 84 (2015) 893–897.
  53. J.D. Killion, S. Garimella, Simulation of pendant droplets and falling films in horizontal tube absorbers, J. Heat Transf., 126 (2004) 1003.
  54. V. Subramaniam, S. Garimella, From measurements of hydrodynamics to computation of species transport in falling films, Int. J. Refrig., 32 (2009) 607–626.
  55. V. Subramaniam, S. Garimella, Numerical study of heat and mass transfer in lithium bromide-water falling films and droplets, Int. J. Refrig., 40 (2014) 211–226.
  56. G. Ji, J. Wu, Y. Chen, G. Ji, Asymmetric distribution of falling film solution flowing on hydrophilic horizontal round tube, Int. J. Refrig., 78 (2017) 83–92.
  57. Z. Xie, D. Pavlidis, J.R. Percival, J.L.M.A. Gomes, C.C. Pain, O.K. Matar, Adaptive unstructured mesh modelling of multiphase flows, Int. J. Multiph. Flow, 67 (2014) 104–110.
  58. J.J. Cooke, L.M. Armstrong, K.H. Luo, S. Gu, Adaptive mesh refinement of gas–liquid flow on an inclined plane, Comput. Chem. Eng., 60 (2014) 297–306.
  59. A.D.G.H. Jasak, Automatic resolution control for the finitevolume method, Part 2: adaptive mesh refinement and coarsening, Numer. Heat Transf. Part B Fundam., 38 (2000) 257–271.
  60. R. Abraham, A. Mani, Heat transfer characteristics in horizontal tube bundles for falling film evaporation in multi-effect desalination system, Desalination, 375 (2015) 129–137.
  61. F. Wunder, S. Enders, R. Semiat, Numerical simulation of heat transfer in a horizontal falling film evaporator of multiple-effect distillation, Desalination, 401 (2017) 206–229.
  62. J. Chen, R. Zhang, R. Niu, Numerical simulation of horizontal tube bundle falling film flow pattern transformation, Renew. Energy, 73 (2015) 62–68.
  63. J.D. Killion, S. Garimella, Gravity-driven flow of liquid films and droplets in horizontal tube banks, Int. J. Refrig., 26 (2003) 516–526.
  64. R. Armbruster, J. Mitrovic, Heat Transfer in Falling Film on a Horizontal Tube, Proceedings of the National Heat Transfer Conference, Portland, 1995, pp. 13–21.
  65. X. Zhang, C. Meng, Q. Qiu, S. Quan, S. Shen, A numerical investigation of liquid film flow and film thickness distribution outside a horizontal tube, Int. J. Low-Carbon Technol., 13 (2018) 424–431.
  66. Q. Qiu, C. Meng, S. Quan, W. Wang, 3-D simulation of flow behaviour and film distribution outside a horizontal tube, Int. J. Heat Mass Transf., 107 (2017) 1028–1034.
  67. H. Hou, Q. Bi, H. Ma, G. Wu, Distribution characteristics of falling film thickness around a horizontal tube, Desalination, 285 (2012) 393–398.
  68. D. Gstoehl, J.F. Roques, P. Crisinel, J.R. Thome, Measurement of falling film thickness around a horizontal tube using a laser measurement technique, Heat Transf. Eng., 25 (2004) 28–34.
  69. X. Chen, S. Shen, Y. Wang, J. Chen, J. Zhang, Measurement on falling film thickness distribution around horizontal tube with laser-induced fluorescence technology, Int. J. Heat Mass Transf., 89 (2015) 707–713.
  70. I.A. Hassan, A. Sadikin, N.M. Isa, The Numerical Modelling of Falling Film Thickness Flow on Horizontal Tubes, AIP Conference Proc., Vol. 1837, 2017, p. 020020. doi: 10.1063/1.4981161.
  71. A. Stärk, K. Loisel, K. Odiot, A. Feßenbecker, A. Kempter, S. Nied, H. Glade, Wetting behaviour of different tube materials and its influence on scale formation in multiple-effect distillers, Desal. Wat. Treat., 55 (2015) 2502–2514.
  72. P. Fernandez de Arroiabe, A. Martinez-Urrutia, X. Peña, M. Martinez-Agirre, M.M. Bou-Ali, Influence of the contact angle on the wettability of horizontal-tube falling films in the droplet and jet flow modes, Int. J. Refrig., 90 (2018) 12–21.
  73. M. Fernandez de Arroiabe, P. Martinez Urrutia, A. Alonso, L. Martinez-Agirre, M. Bouali, CFD Simulation of the Influence of Contact Angle in Falling Film Heat Exchangers, in: 13ème Congrès Mécanique, 11–14 Avril, Meknès, MAROC, 2017.
  74. S.A. Khan, F. Tahir, A.A.B. Baloch, M. Koc, Review of micro–nanoscale surface coatings application for sustaining dropwise condensation, Coatings, 9 (2019) 117.
  75. L. Románszki, M. Mohos, J. Telegdi, Z. Keresztes, L. Nyikos, A comparison of contact angle measurement results obtained on bare, treated, and coated alloy samples by both dynamic sessile drop and Wilhelmy method, Period. Polytech. Chem. Eng., 58 (2014) 53–59.
  76. D. Polster, H. Graaf, Advancing and receding angles – Dynamic contact angle measurements on mixed alkyl monolayers, Appl. Surf. Sci., 265 (2013) 88–93.
  77. J.D. Bernardin, I. Mudawar, C.B. Walsh, E.I. Franses, Contact angle temperature dependence for water droplets on practical aluminum surfaces, Int. J. Heat Mass Transf., 40 (1997) 1017–1033.
  78. X. Liu, Y. Zhao, S. Chen, S. Shen, X. Zhao, Numerical research on the dynamic characteristics of a droplet impacting a hydrophobic tube, Phys. Fluids, 29 (2017) 062105.
  79. L. Xu, M. Ge, S. Wang, Y. Wang, Heat-transfer film coefficients of falling film horizontal tube evaporators, Desalination, 166 (2004) 223–230.
  80. J.M. Gonzalez, G.J.M.S. Jabardo, W.F. Stoecker, Falling Film Ammonia Evaporators, 1992. Available at:
  81. A.A. Mabrouk, K. Bourouni, H.K. Abdulrahim, M. Darwish, A.O. Sharif, Impacts of tube bundle arrangement and feed flow pattern on the scale formation in large capacity MED desalination plants, Desalination, 357 (2015) 275–285.
  82. W.-T. Ji, C.-Y. Zhao, D.-C. Zhang, S. Yoshioka, Y.-L. He, W.-Q. Tao, Effect of vapor flow on the falling film evaporation of R134a outside a horizontal tube bundle, Int. J. Heat Mass Transf., 92 (2016) 1171–1181.
  83. D. Yung, J.J. Lorenz, E.N. Ganić, Vapor/liquid interaction and entrainment in falling film evaporators, J. Heat Transf., 102 (1980) 20.
  84. C.-Y. Zhao, W.-T. Ji, P.-H. Jin, W.-Q. Tao, Cross vapor stream effect on falling film evaporation in horizontal tube bundle using R134a, Heat Transf. Eng., 39 (2018) 724–737.
  85. F. Tahir, A.A. Mabrouk, M. Koc, CFD analysis of spray nozzle arrangements for multi effect desalination evaporator, Proc. 3rd Thermal and Fluids Engineering Conference, 2018, pp. 935–941.
  86. X. Zeng, M.-C. Chyu, Z.H. Ayub, Experimental investigation on ammonia spray evaporator with triangular-pitch plaintube bundle, Part II: evaporator performance, Int. J. Heat Mass Transf., 44 (2001) 2081–2092.
  87. A. Altaee, A. Mabrouk, K. Bourouni, P. Palenzuela, Forward osmosis pretreatment of seawater to thermal desalination: high temperature FO-MSF/MED hybrid system, Desalination, 339 (2014) 18–25.
  88. M.W. Shahzad, K. Thu, Y. Kim, K.C. Ng, An experimental investigation on MEDAD hybrid desalination cycle, Appl. Energy, 148 (2015) 273–281.
  89. M.W. Shahzad, K.C. Ng, An improved multievaporator adsorption desalination cycle for Gulf Cooperation Council countries, Energy Technol., 5 (2017) 1663–1669.
  90. C.Y. Zhao, W.T. Ji, Y.L. He, Y.J. Zhong, W.Q. Tao, A comprehensive numerical study on the subcooled falling film heat transfer on a horizontal smooth tube, Int. J. Heat Mass Transf., 119 (2018) 259–270.
  91. M. Christians, J.R. Thome, Falling film evaporation on enhanced tubes, part 2: Prediction methods and visualization, Int. J. Refrig., 35 (2012) 313–324.
  92. M. Christians, J.R. Thome, Falling film evaporation on enhanced tubes, part 1: Experimental results for pool boiling, onset-of-dryout and falling film evaporation, Int. J. Refrig., 35 (2012) 300–312.
  93. L. Yang, W. Wang, The heat transfer performance of horizontal tube bundles in large falling film evaporators, Int. J. Refrig., 34 (2011) 303–316.
  94. W.H. Parken, L.S. Fletcher, V. Sernas, J.C. Han, Heat transfer through falling film evaporation and boiling on horizontal tubes, J. Heat Transf., 112 (1990) 744.
  95. I. Newson, Heat transfer characteristics of horizontal tube multiple effect (HTME) evaporators - possible enhanced tube profiles, Proceedings of 6th International Symposium on Fresh Water from the Sea, 1978, pp. 113–124.
  96. V.N. Slesarenko, Thermal desalination of sea water in thin film-plants, Desalination, 45 (1983) 295–302.
  97. L. Yang, S. Shen, Experimental study of falling film evaporation heat transfer outside horizontal tubes, Desalination, 220 (2008) 654–660.
  98. L.S. Fletcher, V. Sernas, W.H. Parken, Evaporation Heat transfer coefficients for thin sea water films on horizontal tubes, Ind. Eng. Chem. Process Des. Dev., 14 (1975) 411–416.
  99. M.-C. Chyu, A.E. Bergles, An analytical and experimental study of falling-film evaporation on a horizontal tube, J. Heat Transf., 109 (1987) 983.
  100. J. Mitrovic, Preventing formation of dry patches in seawater falling film evaporators, Desal. Wat. Treat., 29 (2011) 149–157.
  101. P.H. Jin, C.Y. Zhao, W.Q. Tao, Numerical Simulation of Falling Film Cooling on a Horizontal Smooth Tube, 5th Asian Symposium on Computational Heat Transfer and Fluid Flow, Bosan, Korea, 2015.
  102. R. Kouhikamali, S.M.A. Noori Rahim Abadi, M. Hassani, Numerical investigation of falling film evaporation of multi-effect desalination plant, Appl. Therm. Eng., 70 (2014) 477–485.
  103. S. Bigham, R. KouhiKamali, S.M.A. Noori Rahim Abadi, Two-phase flow numerical simulation and experimental verification of falling film evaporation on a horizontal tube bundle, Desal. Wat. Treat., 55 (2015) 2009–2022.
  104. A.E. Al-Rawajfeh, S. Ihm, H. Varshney, A.N. Mabrouk, Scale formation model for high top brine temperature multi-stage flash (MSF) desalination plants, Desalination, 350 (2014) 53–60.
  105. L. Yang, C. Gu, Z. Xu, X. Zhang, S. Shen, Numerical analysis on flow and heat transfer of a tube bundle in a horizontal-tube falling film evaporator, Desal. Wat. Treat., 55 (2015) 3336–3342.
  106. R. Abraham, A. Mani, Effect of flame spray coating on falling film evaporation for multi effect distillation system, Desal. Wat. Treat., 51 (2013) 822–829.
  107. A.T. Conlisk, Analytical solutions for the heat and mass transfer in a falling film absorber, Chem. Eng. Sci., 50 (1995) 651–660.
  108. V.E. Nakoryakov, N.I. Grigor`eva, Heat and mass transfer in film absorption with varying liquid-phase volume, Theor. Found. Chem. Eng., 29 (1995) 242–248.
  109. S.M. Saboya, F.E. Saboya, Experiments on elliptic sections in one- and two-row arrangements of plate fin and tube heat exchangers, Exp. Therm. Fluid Sci., 24 (2001) 67–75.
  110. Q.L. Li, S.L. Li, X.W. Zhang, B.C. Liu, L.X. Ma, M. Pahl, Heat transfer characteristics and flow behaviors of elliptic cylinders in crossflow, J. Qingdao Univ. Sci. Technol., 25 (2004) 434–440.
  111. Q.L. Li, L.X. Ma, S.L. Qi, C. Zhong, M.H. Pahl, Experimental investigation on heat transfer and flow resistance of an 1.6/1.0 elliptic cylinder in crossflow, J. Qingdao Univ. Sci. Technol., 25 (2004) 54–61.
  112. L.C. Luo, G.M. Zhang, J.H. Pan, M.C. Tian, Flow and heat transfer characteristics of falling water film on horizontal circular and non-circular cylinders, J. Hydrodyn., 25 (2013) 404–414.
  113. Y.J. Cheng, Y.H. Liao, C.K. Huang, Heat transfer on a radially rotating heated cylinder, Int. Commun. Heat Mass Transf., 35 (2008) 1355–1359.
  114. K. Khanafer, S.M. Aithal, Mixed convection heat transfer in a lid-driven cavity with a rotating circular cylinder, Int. Commun. Heat Mass Transf., 86 (2017) 131–142.
  115. S. Lin, Z. Zhang, X. Liu, K. Zhuang, X. Li, Numerical study of falling film flow on a horizontal rotating tube, Int. J. Heat Mass Transf., 117 (2018) 465–473.
  116. J.C. Chato, Laminar Condensation Inside Horizontal and Inclined Tubes, Massachusetts Institute of Technology, 1960.
  117. L. Gong, S. Shen, H. Liu, X. Mu, X. Chen, Three-dimensional heat transfer coefficient distributions in a large horizontal-tube falling film evaporator, Desalination, 357 (2015) 104–116.
  118. S. Azimibavil, A. Jafarian Dehkordi, Dynamic simulation of a multi-effect distillation (MED) process, Desalination, 392 (2016) 91–101.
  119. H. Louahlia-Gualous, L. El Omari, Local heat transfer for the evaporation of a Laminar falling liquid film on a cylinder: experimental, numerical, and inverse heat conduction analysis, Numer. Heat Transf. Part A Appl., 50 (2006) 667–688.
  120. T.M. Pääkkönen, M. Riihimäki, C.J. Simonson, E. Muurinen, R.L. Keiski, Crystallization fouling of CaCO3 – Analysis of experimental thermal resistance and its uncertainty, Int. J. Heat Mass Transf., 55 (2012) 6927–6937.
  121. C. Hua Qi, X. Han, H. qing Lv, Y. lei Xing, K. xin Han, Experimental study of heat transfer and scale formation of spiral grooved tube in the falling film distilled desalination, Int. J. Heat Mass Transf., 119 (2018) 654–664.
  122. A.E. Al-Rawajfeh, CaCO3–CO2–H2O system in falling film on a bank of horizontal tubes: model verification, J. Ind. Eng. Chem., 16 (2010) 1050–1058.
  123. T.M. Pääkkönen, U. Ojaniemi, T. Pättikangas, M. Manninen, E. Muurinen, R.L. Keiski, C.J. Simonson, CFD modelling of CaCO3 crystallization fouling on heat transfer surfaces, Int. J. Heat Mass Transf., 97 (2016) 618–630.
  124. J.K. Min, D.H. Choi, Analysis of the absorption process on a horizontal tube using Navier ± Stokes equations with surfacetension effects, Int. J. Heat Mass Transf., 42 (1999) 4567–4578.
  125. D. Ouldhadda, A. Il Idrissi, M. Asbik, Heat transfer in non-Newtonian falling liquid film on a horizontal circular cylinder, Heat Mass Transf. Und Stoffuebertragung., 38 (2002) 713–721.
  126. N. Giannetti, A. Rocchetti, S. Yamaguchi, K. Saito, Heat and mass transfer coefficients of falling-film absorption on a partially wetted horizontal tube, Int. J. Therm. Sci., 126 (2018) 56–66.
  127. F. Babadi, B. Farhanieh, Characteristics of heat and mass transfer in vapor absorption of falling film flow on a horizontal tube, Int. Commun. Heat Mass Transf., 32 (2005) 1253–1265.
  128. C. Woo Park, S. Soo Kim, H. Churl Cho, Y. Tae Kang, Experimental correlation of falling film absorption heat transfer on micro-scale hatched tubes, Int. J. Refrig., 26 (2003) 758–763.
  129. L. Hoffmann, I. Greiter, A. Wagner, V. Weiss, G. Alefeld, Experimental investigation of heat transfer in a horizontal tube falling film absorber with aqueous solutions of LiBr with and without surfactants, Int. J. Refrig., 19 (1996) 331–341.
  130. Y. Chen, R. Cao, J. Wu, Z. Yi, G. Ji, Alternate heat and mass transfer absorption performances on staggered tube bundle with M-W corrugated mesh guider inserts, Int. J. Refrig., 66 (2016) 10–20.
  131. I. Kyung, K.E. Herold, Y.T. Kang, Model for absorption of water vapor into aqueous LiBr flowing over a horizontal smooth tube, Int. J. Refrig., 30 (2007) 591–600.
  132. X. Hu, A.M. Jacobi, Flow Characteristics of Liquid Droplets and Jets Falling Between Horizontal Circular Tubes, Experimental Heat Transfer Fluid Mechanics and Thermodynamics, Edizioni ETS, PISA, 1997, pp. 1295–1302.
  133. X. Hu, A.M. Jacobi, Departure-site spacing for liquid droplets and jets falling between horizontal circular tubes, Exp. Therm. Fluid Sci., 16 (1998) 322–331.
  134. J.-F. Roques, J.R. Thome, Falling film transitions between droplet, column, and sheet flow modes on a vertical array of horizontal 19 FPI and 40 FPI low-finned tubes, Heat Transf. Eng., 24 (2003) 40–45.
  135. J.J. Lorenz, D. Yung, Film breakdown and bundle-depth effects in horizontal-tube, falling-film evaporators, J. Heat Transf., 104 (1982) 569.
  136. P.L. Spedding, Falling Film Flow, in: A-to-Z Guide to Thermodynamics Heat and Mass Transfer and Fluids Engineering, Begellhouse, n.d. doi:10.1615/AtoZ.f.falling_film_flow.
  137. X. Wang, T. Huai, Y. Li, Numerical simulation research of horizontal single-tube falling film evaporation, Procedia Eng., 205 (2017) 1500–1506.