References

  1. D. Wang, Y. Sun, Q. Shang, X. Wang, T. Guo, H. Guan, Q. Lu, Effects of the conjugated structure of Fe–bipyridyl complexes on photoinduced electron transfer in TiO2 photocatalytic systems, J. Catal., 356 (2017) 32–42.
  2. E. Safaralizadeh, S.J. Darzi, A.R. Mahjoub, R. Abazari, Visible light-induced degradation of phenolic compounds by Sudan black dye sensitized TiO2 nanoparticles as an advanced photocatalytic material, Res. Chem. Intermed., 43 (2017) 1197–1209.
  3. DOE, Environmental Quality (Sewage and Industrial Effluents) Regulations, Limits of Effluent Standard, Department of Environment, Ministry of Science, Technology and Environment, Malaysia, Petaling Jaya, Malaysia, 1974.
  4. M.R. Gogate, New paradigms and future critical directions in heterogeneous catalysis and multifunctional reactors, Chem. Eng. Commun., 204 (2017) 1–27.
  5. M.A. Nawi, S. Sabar, Sheilatina, Photocatalytic decolourisation of Reactive Red 4 dye by an immobilised TiO2/chitosan layer by layer system, J. Colloid Interface Sci., 372 (2012) 80–87.
  6. S. Murphy, C. Saurel, A. Morrissey, J. Tobin, M. Oelgemöller, K. Nolan, Photocatalytic activity of a porphyrin/TiO2 composite in the degradation of pharmaceuticals, Appl. Catal., B, 119–120 (2012) 156–165.
  7. N.M. Nghia, N. Negishi, N.T. Hue, Enhanced adsorption and photocatalytic activities of Co-doped TiO2 immobilized on silica for paraquat, J. Electron. Mater., 47 (2018) 692–700.
  8. S. Rajoriya, S. Bargole, S. George, V.K. Saharan, P.R. Gogate, A.B. Pandit, Synthesis and characterization of samarium and nitrogen doped TiO2 photocatalysts for photo-degradation of 4-acetamidophenol in combination with hydrodynamic and acoustic cavitation, Sep. Purif. Technol., 209 (2019) 254–269.
  9. Q. Xiao, L. Ouyang, Photocatalytic activity and hydroxyl radical formation of carbon-doped TiO2 nanocrystalline: effect of calcination temperature, Chem. Eng. J., 148 (2009) 248–253.
  10. F. Laatar, H. Moussa, H. Alem, L. Balan, E. Girot, G. Medjahdi, H. Ezzaouia, R. Schneider, CdSe nanorod/TiO2 nanoparticle heterojunctions with enhanced solar- and visible-light photocatalytic activity, Beilstein J. Nanotechnol., 8 (2017) 2741–2752.
  11. C. Su, C. Shao, Y. Liu, Electrospun nanofibers of TiO2/CdS heteroarchitectures with enhanced photocatalytic activity by visible light, J. Colloid Interface Sci., 359 (2011) 220–227.
  12. N.N. Bahrudin, M.A. Nawi, Immobilized titanium dioxide/powdered activated carbon system for the photocatalytic adsorptive removal of phenol, Korean J. Chem. Eng., 35 (2018) 1532–1541.
  13. S.M. Boyer, J. Liu, S. Zhang, M.I. Ehrlich, D.L. McCarthy, L. Tong, J.B. DeCoste, W.E. Bernier, W.E. Jones Jr., The role of ruthenium photosensitizers in the degradation of phenazopyridine with TiO2 electrospun fibers, J. Photochem. Photobiol., A, 329 (2016) 46–53.
  14. R. Vinu, S. Polisetti, G. Madras, Dye sensitized visible light degradation of phenolic compounds, Chem. Eng. J., 165 (2010) 784–797.
  15. A. Hamdi, S. Boufi, S. Bouattour, Phthalocyanine/chitosan-TiO2 photocatalysts: characterization and photocatalytic activity, Appl. Surf. Sci., 339 (2015) 128–136.
  16. A. Zyoud, N. Zaatar, I. Saadeddin, M.H. Helal, G. Campet, M. Hakim, D. Park, H.S. Hilal, Alternative natural dyes in water purification: Anthocyanin as TiO2-sensitizer in methyl orange photo-degradation, Solid State Sci., 13 (2011) 1268–1275.
  17. N. Hashim, S. Thakur, M. Patang, F. Crapulli, A.K. Ray, Solar degradation of diclofenac using eosin-Y-activated TiO2: cost estimation, process optimization and parameter interaction study, Environ. Technol., 38 (2017) 933–944.
  18. A. Islam, H. Sugihara, K. Hara, L.P. Singh, R. Katoh, M. Yanagida, Y. Takahashi, S. Murata, H. Arakawa, Sensitization of nanocrystalline TiO2 film by ruthenium(II) diimine dithiolate complexes, J. Photochem. Photobiol., A, 145 (2001) 135–141.
  19. M.K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, M. Graetzel, Conversion of light to electricity by cis-X2bis(2,2’-bipyridyl-4,4’-dicarboxylate) ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes, J. Am. Chem. Soc., 115 (1993) 6382–6390.
  20. N.S. Kumar, A. Dhar, A.A. Ibrahim, R.L. Vekariya, P. Bhadja, Designing and fabrication of phenothiazine and carbazole based sensitizers for photocatalytic water splitting application, Int. J. Hydrogen Energy, 43 (2018) 17057–17063.
  21. A. Tiwari, N.V. Krishna, L. Giribabu, U. Pal, Hierarchical porous TiO2 embedded unsymmetrical zinc–phthalocyanine sensitizer for visible-light-induced photocatalytic H2 production, J. Phys. Chem. C, 122 (2018) 495–502.
  22. M.A. Nawi, A.H. Jawad, S. Sabar, W.S.W. Ngah, Immobilized bilayer TiO2/chitosan system for the removal of phenol under irradiation by a 45 watt compact fluorescent lamp, Desalination, 280 (2011) 288–296.
  23. M.A. Nawi, S. Sabar, A.H. Jawad, Sheilatina, W.S.W. Ngah, Adsorption of Reactive Red 4 by immobilized chitosan on glass plates: Towards the design of immobilized TiO2-chitosan synergistic photocatalyst-adsorption bilayer system, Biochem. Eng. J., 49 (2010) 317–325.
  24. S. Sabar, M.A. Nawi, Fabrication and application of an immobilized TiO2/chitosan layer-by-layer system loaded with Reactive Red 4 dye for the removal of phenol and its intermediates, Desal. Wat. Treat., 57 (2016) 10312–10323.
  25. M.A. Nawi, Y.S. Ngoh, S.M. Zain, Photoetching of immobilized TiO2-ENR50-PVC composite for improved photocatalytic activity, Int. J. Photoenergy, 2012 (2012) 12 p.
  26. M.A. Nawi, S.M. Zain, Enhancing the surface properties of the immobilized Degussa P-25 TiO2 for the efficient photocatalytic removal of methylene blue from aqueous solution, Appl. Surf. Sci., 258 (2012) 6148–6157.
  27. K. Ishibashi, A. Fujishima, T. Watanabe, K. Hashimoto, Quantum yields of active oxidative species formed on TiO2 photocatalyst, J. Photochem. Photobiol., A, 134 (2000) 139–142.
  28. W.J. Jones, A. Grofcsik, M. Kubinyi, D. Thomas, Concentrationmodulated absorption spectroscopy and the triplet state: Photoinduced absorption/bleaching in erythrosin B, rose bengal and eosin Y, J. Mol. Struct., 792 (2006) 121–129.
  29. S. Min, G. Lu, Dye-cosensitized graphene/Pt photocatalyst for high efficient visible light hydrogen evolution, Int. J. Hydrogen Energy, 37 (2012) 10564–10574.
  30. Y. Xu, M.A.A. Schoonen, The absolute energy positions of conduction and valence bands of selected semiconducting minerals, Am. Mineral., 85 (2000) 543–556.
  31. A. Sergawie, S. Admassie, W. Mammo, T. Yohannes, T. Solornon, Synthesis and characterization of poly[3-(2’,5’-diheptyloxyphenyl) thiophene] for use in photoelectrochemical cells, Bull. Chem. Soc. Ethiop., 21 (2007) 405–417.
  32. M. Hu, Y. Xu, J. Zhao, Efficient photosensitized degradation of 4-chlorophenol over immobilized aluminum tetrasulfophthalocyanine in the presence of hydrogen peroxide, Langmuir, 20 (2004) 6302–6307.
  33. J. Liqiang, Q. Yichun, W. Baiqi, L. Shudan, J. Baojiang, Y. Libin, F. Wei, F. Honggang, S. Jiazhong, Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity, Sol. Energy Mater. Sol. Cells, 90 (2006) 1773–1787.
  34. Y. Ku, Y.H. Huang, Y.C. Chou, Preparation and characterization of ZnO/TiO2 for the photocatalytic reduction of Cr(VI) in aqueous solution, J. Mol. Catal. A: Chem., 342–343 (2011) 18–22.
  35. I.K. Konstantinou, T.A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review, Appl. Catal., B, 49 (2004) 1–14.
  36. J. Zhao, C. Chen, W. Ma, Photocatalytic degradation of organic pollutants under visible light irradiation, Top. Catal., 35 (2005) 269–278.
  37. C.H. Chiou, C.Y. Wu, R.S. Juang, Influence of operating parameters on photocatalytic degradation of phenol in UV/TiO2 process, Chem. Eng. J., 139 (2008) 322–329.
  38. A. Rey, J. Carbajo, C. Adán, M. Faraldos, A. Bahamonde, J.A. Casas, J.J. Rodriguez, Improved mineralization by combined advanced oxidation processes, Chem. Eng. J., 174 (2011) 134–142.