1. K.T. Chung, Azo dyes and human health: a review, J. Environ. Sci. Health C, 34 (2016) 233–261.
  2. P.F. Gordon, P. Gregory, Azo dyes, In: Organic Chemistry in Colour, Springer, Berlin Heidelberg, 1987, pp. 95–162.
  3. J. Smith, L. Hong-Shum, Food Additives Data Book, John Wiley & Sons, United Kingdom, 2003.
  4. K. Bevziuk, A. Chebotarev, D. Snigur, Y. Bazel, M. Fizer, V. Sidey, Spectrophotometric and theoretical studies of the protonation of Allura Red AC and Ponceau 4R, J. Mol. Struct., 1144 (2015) 216–244.
  5. A.M. Contento, Nuevos métodos fotométricos y cromatográficos para la determinación de colorantes rojos en alimentos, Ediciones de la Universidad de Castilla-La Mancha, Cuenca, 1997.
  6. EFSA Panel on Food Additives and Nutrient Sources added to Food, Scientific Opinion on the reevaluation of Ponceau 4R (E 124) as a food additive on request from the European Commission, EFSA J., 7 (2009) 1–39.
  7. S. Tsuda, M. Murakami, N. Matsusaka, K. Kano, K. Taniguchi, Yu F. Sasaki, DNA damage induced by red food dyes orally administered to pregnant and male mice, Toxicol. Sci., 61 (2001) 92–99.
  8. J. König, Food Colour Additives of Synthetic Origin, In: M.J. Scotter, Colour Additives for Foods and Beverages, Woodhead Publishing, 2015, pp. 35–60.
  9. National Center for Biotechnology Information, PubChem Compound Database; CID=9570119. Available at:
  10. L. Pereira, M. Alves, Dyes—Environmental Impact and Remediation; In: A. Malik, E. Grohmann, Environmental Protection Strategies for Sustainable Development, Springer, New York, 2012, pp. 111–162.
  11. C. Benincá, P. Peralta-Zamora, C. Regina, G. Tavares, L. Igarashi- Mafra, Degradation of an azo dye (Ponceau 4R) and treatment of wastewater from a food industry by ozonation, Ozone–Sci. Eng., 35 (2013) 295–301.
  12. Y. Deng, R. Zhao, Advanced oxidation processes (AOPs) in wastewater treatment, Curr. Pollut. Rep., 1 (2015) 167–176.
  13. J.P. Kehrer, J.D. Robertson, C.V. Smith, Free Radicals and Reactive Oxygen Species, In: C.A. McQueen, Comprehensive Toxicology, 3rd ed., Elsevier, 2018, pp. 262–294.
  14. S.C. Ameta, Introduction, In: S.C. Ameta, R. Ameta, Advanced Oxidation Processes for Wastewater Treatment, Emerging Green Chemical Technology, 1st ed., Academic Press, 2018, pp. 1–12.
  15. S. Goldstein, D. Aschengrau, Y. Diamant, J. Rabani, Photolysis of aqueous H2O2: quantum yield and applications for polychromatic UV actinometry in photoreactors, Environ. Sci. Technol., 41 (2007) 7486–7490.
  16. J.C. Mierzwa, R. Rodrigues, A.C.S.C. Teixeira, UV-Hydrogen Peroxide Processes, In: S.C. Ameta, R. Ameta, Advanced Oxidation Processes for Waste Water Treatment Emerging Green Chemical Technology, 1st ed., Academic Press, 2018, pp. 13–48.
  17. D. Spuhler, J.A. Rengifo-Herrera, C. Pulgarín, The effect of Fe2+, Fe3+, H2O2 and the photo-Fenton reagent at near neutral pH on the solar disinfection (SODIS) at low temperatures of water containing Escherichia coli K12, Appl. Catal., B, 96 (2010) 126–141.
  18. G. Cruz-González, C. Julcour, H. Chaumat, U. Jáuregui-Haza, H. Delmas, Degradation of 2,4-dichlorophenoxyacetic acid by photolysis and photo-Fenton oxidation, J. Environ. Chem. Eng., 6 (2018) 874–882.
  19. D.H. Quiñones, P.M. Álvarez, A. Rey, S. Contreras, F.J. Beltrán, Application of solar photocatalytic ozonation for the degradation of emerging contaminants in water in a pilot plant, Chem. Eng. J., 260 (2015) 399–410.
  20. J. Herney-Ramirez, M.A. Vicente, L.M. Madeira, Heterogeneous photo-Fenton oxidation with pillared clay-based catalysts for wastewater treatment: a review, Appl. Catal., B, 98 (2010) 10–26.
  21. K. Sivagami, K.P. Sakthivel, I.M. Nambi, Advanced oxidation processes for the treatment of tannery wastewater, J. Environ. Chem. Eng., 6 (2018) 3656–3663.
  22. M. Aleksić, H. Kušić, N. Koprivanac, D. Leszczynska, A. Lončarić, Heterogeneous Fenton type processes for the degradation of organic dye pollutant in water — The application of zeolite assisted AOPs, Desalination, 257 (2010) 22–29.
  23. J. He, X. Yang, B. Men, D. Wang, Interfacial mechanisms of heterogeneous Fenton reactions catalyzed by iron-based materials: a review, J. Environ. Sci., 39 (2016) 97–109.
  24. B. Kasprzyk-Hordern, M. Ziółek, J. Nawrocki, Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment, Appl. Catal., B, 46 (2003) 639–669.
  25. G. Merényi, J. Lind, S. Naumov, C. von Sonntag, Reaction of ozone with hydrogen peroxide (peroxone process): a revision of current mechanistic concepts based on thermokinetic and quantum-chemical considerations, Environ. Sci. Technol., 44 (2010) 3505–3507.
  26. F. Beduk, M. Emin, A. Ozcan, Degradation of malathion and parathion by ozonation, photolytic ozonation, and heterogeneous catalytic ozonation processes, Clean Soil Air Water, 40 (2012) 179–187.
  27. P.S. Bailey, The reactions of ozone with organic compounds, Chem. Rev., 58 (1958) 925–1010.
  28. M. Mehrjouei, S. Müller, D. Möller, A review on photocatalytic ozonation used for the treatment of water and wastewater, Chem. Eng. J., 263 (2015) 209–219.
  29. A.G. Trovó, T.F.S. Silva, O. Gomes, A.E.H. Machado, W. Borges, P.S. Muller, D. Daniel, Degradation of caffeine by photo-Fenton process: optimization of treatment conditions using experimental design, Chemosphere, 90 (2013) 170–175.
  30. Y. Yang, J. Pignatello, J. Ma, W. Mitch, Effect of matrix components on UV/H2O2 and UV/S2O82– advanced oxidation processes for trace organic degradation in reverse osmosis brines from municipal wastewater reuse facilities, Water Res., 89 (2016) 192–200.
  31. S. Jiménez, M. Andreozzi, M.M. Micó, M.G. Álvarez, S. Contreras, Produced water treatment by advanced oxidation processes, Sci. Total Environ., 666 (2019) 12–21.
  32. J. Bacardit, J. Stötzner, E. Chamarro, S. Esplugas, Effect of salinity on the photo-Fenton process, Ind. Eng. Chem. Res., 46 (2007) 7615–7619.
  33. M. Brumovský, J. Bečanová, J. Kohoutek, M. Borghini, L. Nizzetto, Contaminants of emerging concern in the open sea waters of the Western Mediterranean, Environ. Pollut., 229 (2017) 976–983.
  34. L. Arpin-Pont, M.J. Martinez, E. Gomez, H. Fenet, Occurrence of PPCPs in the marine environment: a review, Environ. Sci. Pollut. Res., 23 (2016) 4978–4991.
  35. S. Burgos-Núñez, A. Navarro-Frómeta, J. Marrugo-Negrete, G. Enamorado-Montes, I. Urango-Cárdena, Polycyclic aromatic hydrocarbons and heavy metals in the Cispata Bay, Colombia: A marine tropical ecosystem, Mar. Pollut. Bull., 120 (2017) 379–386.
  36. M. Fayazi, M.A. Taher, D. Afzali, A. Mostafavi, Enhanced Fenton-like degradation of methylene blue by magnetically activated carbon/hydrogen peroxide with hydroxylamine as Fenton enhancer, J. Mol. Liq., 216 (2016) 781–787.
  37. S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L.V. Elst, R.N. Muller, Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications, Chem. Rev., 108 (2008) 2064–2110.
  38. B.M. Babić, S.K. Milonjić, M.J. Polovina, B.V. Kaludierović, Point of zero charge and intrinsic equilibrium constants of activated carbon cloth, Carbon, 37 (1999) 477–481.
  39. W. Masschelein, M. Denis, R. Ledent, Spectrophotometric determination of residual hydrogen peroxide, Water Sewage Works, 124 (1977) 69–72.
  40. E.W. Rice, R.B. Baird, A.D. Eaton, Standard Methods for the Examination of Water and Wastewater, 23rd ed., American Public Health Association, American Water Works Association, Water Pollution Control Federation, New York, 2017.
  41. W. Kim, C.Y. Suh, S.W. Cho, K.M. Roh, H. Kwon, K. Song, I.J. Shon, A new method for the identification and quantification of magnetite–maghemite mixture using conventional X-ray diffraction technique, Talanta, 94 (2012) 348–352.
  42. A. Sarswat, D. Mohan, Sustainable development of coconut shell activated carbon (CSAC) and a magnetic coconut shell activated carbon (MCSAC) for phenol (2-nitrophenol) removal, RSC Adv. 6 (2016) 85390–85410.
  43. Z.Y. Bai, Q. Yang, J.L. Wang, Fe3O4/multi-walled carbon nanotubes as an efficient catalyst for catalytic ozonation of p-hydroxybenzoic acid, Int. J. Environ. Sci. Technol., 13 (2016) 483–492.
  44. H. Gupta, R. Kumar, H.S. Park, B.H, Jeon, Photocatalytic efficiency of iron oxide nanoparticles for the degradation of priority pollutant anthracene, Geosyst. Eng., 20 (2017) 21–27.
  45. D. Beydoun, G.K.C. Low, S. McEvoy, Novel photocatalyst: titania-coated magnetite. Activity and photodissolution, J. Phys. Chem. B, 104 (2000) 4387–4396.
  46. S. Wang, C.W. Ng, W. Wang, Q. Li, Z. Hao, Synergistic and competitive adsorption of organic dyes on multiwalled carbon nanotubes, Chem. Eng. J., 197 (2012) 34–40.
  47. L.R. Radovic, I.F. Silva, J.I. Ume, J.A. Menéndez, C.A.L.Y. Leon, A.W. Scaroni, An experimental and theoretical study of the adsorption of aromatics possessing electron-withdrawing and electron-donating functional groups by chemically modified activated carbons, Carbon, 35 (1997) 1339–1348.
  48. A.S. Özen, P. Doruker, V. Aviyente, Effect of cooperative hydrogen bonding in azo−hydrazone tautomerism of azo dyes, J. Phys. Chem. A, 111 (2007) 13506–13514.
  49. A. Lopez, H. Benbelkacem, J.S. Pic, H. Oxidation pathways for ozonation of azo dyes in a semi‐batch reactor: a kinetic parameters approach, Environ. Technol., 25 (2004) 311–321.
  50. M. Matsui, Y. Iwata, T. Kato, K. Shibata, Reaction of aromatic azo compounds with ozone, Dyes Pigm., 9 (1988) 109–117.
  51. C.H. Kuo, L. Zhong, M.E. Zappi, A.P. Hong, Kinetics and mechanism of the reaction between ozone and hydrogen peroxide in aqueous solutions, Can. J. Chem. Eng., 77 (1999) 473–482.
  52. K. Sharma, R.K. Vyas, K. Singh, A.K Dalai, Degradation of a synthetic binary dye mixture using reactive adsorption: experimental and modeling studies, J. Environ. Chem. Eng., 6 (2018) 5732–5743.
  53. H. Valdes, C.A. Zaror, Heterogeneous and homogeneous catalytic ozonation of benzothiazole promoted by activated carbon: kinetic approach, Chemosphere, 65 (2006) 1131–1136.
  54. J. Rivera-Utrilla, M. Sánchez-Polo, Ozonation of 1,3,6-naphthalenetrisulphonic acid catalysed by activated carbon in aqueous phase, Appl. Catal., B, 39 (2002) 319–329.
  55. M. Muruganandham, M. Swaminathan, Photochemical oxidation of reactive azo dye with UV–H2O2 process, Dyes Pigm., 62 (2004) 269–275.
  56. C. Galindo, A. Kalt, UV-H2O2 oxidation of monoazo dyes in aqueous media: a kinetic study, Dyes Pigm., 40 (1998) 27–35.
  57. A.L. Pham, C. Lee, F.M. Doyle, D.L. Sedlak, A silicasupported iron oxide catalyst capable of activating hydrogen peroxide at neutral pH values, Environ. Sci. Technol., 43 (2009) 8930–8935.
  58. J.A. Zazo, G. Pliego, S. Blasco, J.A. Casas, J.J. Rodriguez, Intensification of the Fenton process by increasing the temperature, Ind. Eng. Chem. Res., 50 (2011) 866–870.
  59. A.C. Gomesa, J.C. Nunesa, R.M.S. Simões, Determination of fast ozone oxidation rate for textile dyes by using a continuous quench-flow system, J. Hazard. Mater., 178 (2010) 57–65.
  60. F.J. Beltrán, P. Álvarez, Rate constant determination of ozoneorganic fast reactions in water using an agitated cell, J. Environ. Sci. Health A, 31 (1996) 1159–1178.
  61. R. Maciel, G.L. Sant’Anna, M. Dezotti, Phenol removal from high salinity effluents using Fenton’s reagent and photo-Fenton reactions, Chemosphere, 57 (2004) 711–719.