References

  1. N. Wang, T. Zheng, G.S Zhang, P. Wang, A review on Fenton-like processes for organic wastewater treatment, J. Environ. Chem. Eng., 4 (2016) 762–787.
  2. S.Y. Park, J.W. Lee, J.H. Song, T.J. Kim, Y.-M. Chung, S.H. Oh, I.K. Song, Direct synthesis of hydrogen peroxide from hydrogen and oxygen over Pd/HZSM-5 catalysts: effect of Brönsted acidity, J. Mol. Catal. A: Chem., 363 (2012) 230–236.
  3. N. Tan, Z. Yang, X.-B. Gong, Z.-R. Wang, T. Fu, Y. Liu, In situ generation of H2O2 using MWCNT-Al/O2 system and possible application for glyphosate degradation, Sci. Total Environ., 650 (2019) 2567–2576.
  4. P. Landon, P.J. Collier, A.F. Carley, D. Chadwick, A.J. Papworth, A. Burrows, G.J. Hutchings, Direct synthesis of hydrogen peroxide from H2 and O2 using Pd and Au catalysts, Phys. Chem. Chem. Phys., 5 (2003) 1917–1923.
  5. J.K. Edwards, N. Ntainjua, A.F. Carley, A.A. Herzing, C.J. Kiely, G.J. Hutchings, Direct synthesis of H2O2 from H2 and O2 over gold, palladium, and gold–palladium catalysts supported on acid-pretreated TiO2, Angew. Chem. Int. Ed., 48 (2009) 8512–8515.
  6. B.E. Solsona, J.K. Edwards, P. Landon, A.F. Carley, A. Herzing, C.J. Kiely, G.J. Hutchings, Direct synthesis of hydrogen peroxide from H2 and O2 using Al2O3 supported Au−Pd catalysts, Chem. Mater., 18 (2006) 2689–2695.
  7. Y.J. Huang, X.C. Zhou, M. Yin, C.P. Liu, W. Xing, Novel PdAu@ Au/C core−shell catalyst: Superior activity and selectivity in formic acid decomposition for hydrogen generation, Chem. Mater., 22 (2010) 5122–5128.
  8. S. Zhang, Y.Y. Shao, H.-G. Liao, J. Liu, I.A. Aksay, G.P. Yin, Y.H. Lin, Graphene decorated with PtAu alloy nanoparticles: facile synthesis and promising application for formic acid oxidation, Chem. Mater., 23 (2011) 1079–1081.
  9. Z.-L. Wang, Y. Ping, J.-M. Yan, H.-L. Wang, Q. Jiang, Hydrogen generation from formic acid decomposition at room temperature using a NiAuPd alloy nanocatalyst, Int. J. Hydrogen Energy, 39 (2014) 4850–4856.
  10. Z.Y. Zhang, S.-W. Cao, Y. Liao, C. Xue, Selective photocatalytic decomposition of formic acid over AuPd nanoparticle-decorated TiO2 nanofibers toward high-yield hydrogen production, Appl. Catal., B, 162 (2015) 204–209.
  11. S.-J. Li, Y. Ping, J.-M. Yan, H.-L. Wang, M. Wu, Q. Jiang, Facile synthesis of AgAuPd/graphene with high performance for hydrogen generation from formic acid, J. Mater. Chem. A., 3 (2015) 14535–14538.
  12. K. Tedsree, T. Li, S. Jones, C.W.A. Chan, K.M.K. Yu, P.A. Bagot, E.A. Marquis, G.D.W. Smith, S.C.E. Tsang, Hydrogen production from formic acid decomposition at room temperature using a Ag–Pd core–shell nanocatalyst, Nat. Nanotechnol., 6 (2011) 302.
  13. K. Mori, S. Masuda, H. Tanaka, K. Yoshizawa, M. Che, H. Yamashita, Phenylamine-functionalized mesoporous silica supported PdAg nanoparticles: a dual heterogeneous catalyst for formic acid/CO2-mediated chemical hydrogen delivery/storage, Chem. Commun., 53 (2017) 4677–4680.
  14. M.S. Yalfani, S. Contreras, F. Medina, J. Sueiras, Direct generation of hydrogen peroxide from formic acid and O2 using heterogeneous Pd/γ-Al2O3 catalysts, Chem. Commun., (2008) 3885–3887, doi: 10.1039/b803149e.
  15. V.R. Choudhary, P. Jana, In situ generation of hydrogen peroxide from reaction of O2 with hydroxylamine from hydroxylammonium salt in neutral aqueous or non-aqueous medium using reusable Pd/Al2O3 catalyst, Catal. Commun., 8 (2007) 1578–1582.
  16. M.S. Yalfani, S. Contreras, F. Medina, J.E. Sueiras, Hydrogen substitutes for the in situ generation of H2O2: an application in the Fenton reaction, J. Hazard. Mater., 192 (2011) 340–346.
  17. X.F. Li, X. Liu, L. Xu, Y.Z. Wen, J.Q. Ma, Z.C. Wu, Highly dispersed Pd/PdO/Fe2O3 nanoparticles in SBA-15 for Fenton-like processes: confinement and synergistic effects, Appl. Catal., B, 165 (2015) 79–86.
  18. N.A.N. Mohamad, N.A. Arham, J. Jai, A. Hadi, Plant extract as reducing agent in synthesis of metallic nanoparticles: a review, Adv. Mater. Res., 832 (2014) 350–355.
  19. D.J. Mabberley, Citrus (Rutaceae): a review of recent advances in etymology, systematics and medical applications, Evol. Biogeogr. Plants, 49 (2004) 481–498.
  20. W. Konicki, I. Pełech, E. Mijowska, I. Jasińska, Adsorption of anionic dye Direct Red 23 onto magnetic multi-walled carbon nanotubes-Fe3C nanocomposite: kinetics, equilibrium and thermodynamics, Chem. Eng. J., 210 (2012) 87–95.
  21. F. Deniz, S. Karaman, Removal of Basic Red 46 dye from aqueous solution by pine tree leaves, Chem. Eng. J., 170 (2011) 67–74.
  22. M. Nasrollahzadeh, S.M. Sajadi, A. Rostami-Vartooni, M. Khalaj, Green synthesis of Pd/Fe3O4 nanoparticles using Euphorbia condylocarpa M. bieb root extract and their catalytic applications as magnetically recoverable and stable recyclable catalysts for the phosphine-free Sonogashira and Suzuki coupling reactions, J. Mol. Catal. A: Chem, 396 (2015) 31–39.
  23. H.A. Elazab, A.R. Siamaki, S. Moussa, B.F. Gupton, M.S. El-Shall, Highly efficient and magnetically recyclable graphenesupported Pd/Fe3O4 nanoparticle catalysts for Suzuki and Heck cross-coupling reactions, Appl. Catal., A, 491 (2015) 58–69.
  24. T. Shahwan, S.A. Sirriah, M. Nairat, E. Boyacı, A.E. Eroğlu, T.B. Scott, K.R. Hallam, Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes, Chem. Eng. J., 172 (2011) 258–266.
  25. Y. Kuang, Q.P. Wang, Z.L. Chen, M. Megharaj, R. Naidu, Heterogeneous Fenton-like oxidation of monochlorobenzene using green synthesis of iron nanoparticles, J. Colloid Interface Sci., 410 (2013) 67–73.
  26. J.-H. Sun, S.-P. Sun, G.-L. Wang, L.-P. Qiao, Degradation of azo dye Amido black 10B in aqueous solution by Fenton oxidation process, Dyes Pigm., 74 (2007) 647–652.
  27. M. Neamtu, A. Yediler, I. Siminiceanu, A. Kettrup, Oxidation of commercial reactive azo dye aqueous solutions by the photo-Fenton and Fenton-like processes, J. Photochem. Photobiol., A, 161 (2003) 87–93.
  28. Y. Liu, Q. Fan, J.L. Wang, Zn-Fe-CNTs catalytic in situ generation of H2O2 for Fenton-like degradation of sulfamethoxazole, J. Hazard. Mater., 342 (2018) 166–176.
  29. T.S. Sheriff, S. Cope, M. Ekwegh, Calmagite dyeoxidation using in situ generated hydrogen peroxide catalysed by manganese(II) ions, Dalton Trans., 44 (2007) 5119–5122.
  30. M. Ergüt, D. Uzunoğlu, A. Özer, Efficient decolourization of malachite green with biosynthesized iron oxide nanoparticles loaded carbonated hydroxyapatite as a reusable heterogeneous Fenton-like catalyst, J. Environ. Sci. Health. Part A Toxic/Hazard. Subst. Environ. Eng., 54 (2019) 1–15.