References

  1. X.J. He, H. Deng, H.-m. Hwang, The current application of nanotechnology in food and agriculture, J. Food Drug Anal., 27 (2019) 1–21.
  2. E. Busi, S. Maranghi, L. Corsi, R. Basosi, Environmental sustainability evaluation of innovative self-cleaning textiles, J. Cleaner Prod., 133 (2016) 439–450.
  3. M. Kamali, K.M. Persson, M.E. Costa, I. Capela, Sustainability criteria for assessing nanotechnology applicability in industrial wastewater treatment: current status and future outlook, Environ. Int., 125 (2019) 261–276.
  4. G. Doganli, B. Yuzer, I. Aydin, T. Gultekin, A.H. Con, H. Selcuk, S. Palamutcu, Functionalization of cotton fabric with nanosized TiO2 coating for self-cleaning and antibacterial property enhancement, J. Coat. Technol. Res., 13 (2016) 257–265.
  5. B. Yuzer, M. Guida, F. Ciner, B. Aktan, M.I. Aydin, S. Meric, H. Selcuk, A multifaceted aggregation and toxicity assessment study of sol-gel-based TiO2 nanoparticles during textile wastewater treatment, Desal. Wat. Treat., 57 (2016) 4966–4973.
  6. L. Clément, C. Hurel, N. Marmier, Toxicity of TiO2 nanoparticles to cladocerans, algae, rotifers and plants – effects of size and crystalline structure, Chemosphere, 90 (2013) 1083–1090.
  7. A.J. Haider, Z.N. Jameel, I.H.M. Al-Hussaini, Review on: titanium dioxide applications, Energy Procedia, 157 (2019) 17–29.
  8. B. Saha, S. Kumar, S. Sengupta, Green synthesis of nano silver on TiO2 catalyst for application in oxidation of thiophene, Chem. Eng. Sci., 199 (2019) 332–341.
  9. B. Bocca, S. Caimi, O. Senofonte, A. Alimonti, F. Petrucci, ICP-MS based methods to characterize nanoparticles of TiO2 and ZnO in sunscreens with focus on regulatory and safety issues, Sci. Total Environ., 630 (2018) 922–930.
  10. I. de la Calle, M. Menta, M. Klein, F. Séby, Screening of TiO2 and Au nanoparticles in cosmetics and determination of elemental impurities by multiple techniques (DLS, SP-ICP-MS, ICP-MS and ICP-OES), Talanta, 171 (2017) 291–306.
  11. M. Taheri, M. Jahanfar, K. Ogino, Self-cleaning traffic marking paint, Surf. Interfaces, 9 (2017) 13–20.
  12. Sutisna, M. Rokhmat, E. Wibowo, Khairurrijal, M. Abdullah, Coating TiO2 nanoparticles on the surface of transparent plastic granules using combined electrostatic and heating methods for the photocatalytic degradation of organic pollutants in water, Environ. Nanotechnol. Monit. Manage., 8 (2017) 1–10.
  13. M.R. Al-Mamun, S. Kader, M.S. Islam, M.Z.H. Khan, Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: a review, J. Environ. Chem. Eng., 7 (2019) 103248.
  14. Q.F. Zhao, M. Wang, H. Yang, D. Shi, Y.H. Wang, Preparation, characterization and the antimicrobial properties of metal iondoped TiO2 nano-powders, Ceram. Int., 44 (2018) 5145–5154.
  15. V. Kumaravel, S. Mathew, J. Bartlett, S.C. Pillai, Photocatalytic hydrogen production using metal doped TiO2: a review of recent advances, Appl. Catal., B, 244 (2019) 1021–1064.
  16. L.K. Limbach, R. Bereiter, E. Müller, R. Krebs, R. Gälli, W.J. Stark, Removal of oxide nanoparticles in a model wastewater treatment plant: influence of agglomeration and surfactants on clearing efficiency, Environ. Sci. Technol., 42 (2008) 5828–5833.
  17. H.P. Jarvie, H. Al-Obaidi, S.M. King, M.J. Bowes, M.J. Lawrence, A.F. Drake, M.A. Green, P.J. Dobson, Fate of silica nanoparticles in simulated primary wastewater treatment, Environ. Sci. Technol., 43 (2009) 8622–8628.
  18. Y.F. Wang, P. Westerhoff, K.D. Hristovski, Fate and biological effects of silver, titanium dioxide, and C60 (fullerene) nanomaterials during simulated wastewater treatment processes, J. Hazard. Mater., 201–202 (2012) 16–22.
  19. R. Kaegi, A. Voegelin, B. Sinnet, S. Zuleeg, H. Hagendorfer, M. Burkhardt, H. Siegrist, Behavior of metallic silver nanoparticles in a pilot wastewater treatment plant, Environ. Sci. Technol., 45 (2011) 3902–3908.
  20. H.-J. Park, H.Y. Kim, S. Cha, C.H. Ahn, J.Y. Roh, S.M. Park, S.J. Kim, K.H. Choi, J.H. Yi, Y.H. Kim, J.Y. Yoon, Removal characteristics of engineered nanoparticles by activated sludge, Chemosphere, 92 (2013) 524–528.
  21. M. Heinlaan, A. Ivask, I. Blinova, H.-C. Dubourguier, A. Kahru, Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus, Chemosphere, 71 (2008) 1308–1316.
  22. I. Velzeboer, A.J. Hendriks, A.M.J. Ragas, D. van de Meent, Aquatic ecotoxicity tests of some nanomaterials, Environ. Toxicol. Chem., 27 (2008) 1942.
  23. K. Wiench, W. Wohlleben, V. Hisgen, K. Radke, E. Salinas, S. Zok, R. Landsiedel, Acute and chronic effects of nanoand non-nano-scale TiO2 and ZnO particles on mobility and reproduction of the freshwater invertebrate Daphnia magna, Chemosphere, 76 (2009) 1356–1365.
  24. I.M. Sadiq, S. Dalai, N. Chandrasekaran, A. Mukherjee, Ecotoxicity study of titania (TiO2) NPs on two microalgae species: Scenedesmus sp. and Chlorella sp., Ecotoxicol. Environ. Saf., 74 (2011) 1180–1187.
  25. V. Aruoja, H.-C. Dubourguier, K. Kasemets, A. Kahru, Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata, Sci. Total Environ., 407 (2009) 1461–1468.
  26. P. Kocbek, K. Teskač, M.E. Kreft, J. Kristl, Toxicological aspects of long-term treatment of keratinocytes with ZnO and TiO2 nanoparticles, Small, 6 (2010) 1908–1917.
  27. Z.W. Li, X.J. Wang, B.R. Ma, S. Wang, D. Zheng, Z.L. She, L. Guo, Y.G. Zhao, Q.Y. Xu, C.J. Jin, S.S. Li, M.C. Gao, Long-term impacts of titanium dioxide nanoparticles (TiO2 NPs) on performance and microbial community of activated sludge, Bioresour. Technol., 238 (2017) 361–368.
  28. A. Karlikanovaite-Balikci, N. Yagci, Determination and evaluation of kinetic parameters of activated sludge biomass from a sludge reduction system treating real sewage by respirometry testing, J. Environ. Manage., 240 (2019) 303–310.
  29. M. Arias-Navarro, M. Villen-Guzman, R. Perez-Recuerda, J.M. Rodriguez-Maroto, The use of respirometry as a tool for the diagnosis of waste water treatment plants. A real case study in Southern Spain, J. Water Process Eng., 29 (2019) 100791.
  30. E.U. Cokgor, S. Ozdemir, O. Karahan, G. Insel, D. Orhon, Critical appraisal of respirometric methods for metal inhibition on activated sludge, J. Hazard. Mater., 139 (2007) 332–339.
  31. S. Meriç, G. Eremektar, F. Çiner, O. Tünay, An OUR-based approach to determine the toxic effects of 2,4-dichlorophenoxyacetic acid in activated sludge, J. Hazard. Mater., 101 (2003) 147–155.
  32. Ö. Karahan, Inhibition effect of linear alkylbenzene sulphonates on the biodegradation mechanisms of activated sludge, Bioresour. Technol., 101 (2010) 92–97.
  33. R. Çalhan, Effects and Behaviors of Textile Nanoparticles in Biological Treatment Systems, Pamukkale University, Denizli, Turkey, 2012.
  34. P. Foladori, L. Bruni, S. Tamburini, Toxicant inhibition in activated sludge: fractionation of the physiological status of bacteria, J. Hazard. Mater. 280 (2014) 758–766.
  35. ISO/TC 147/SC 5 Biological Methods, ISO 8192:2007 Water Quality – Test for Inhibition of Oxygen Consumption by Activated Sludge for Carbonaceous and Ammonium Oxidation, Geneva, Switzerland, 2007. Available at: https://www.iso.org/standard/37369.html.
  36. ISO, Water Quality — Determination of the Inhibition of the Mobility of Daphnia magna Straus (Cladocera, Crustacea) — Acute Toxicity Test, Geneva, Switzerland, 2012.
  37. APHA, AWWA, WEF, Standard Methods for the Examination of Water and Wastewater, American Public Health Association, American Water Works Association, Water Environment Federation, Washington, DC 20001-3710, USA, 2012, p. 741.
  38. S. Gartiser, F. Flach, C. Nickel, M. Stintz, S. Damme, A. Schaeffer, L. Erdinger, T.A.J. Kuhlbusch, Behavior of nanoscale titanium dioxide in laboratory wastewater treatment plants according to OECD 303 A, Chemosphere, 104 (2014) 197–204.
  39. Y.G. Chen, H. Mu, X. Zheng, Chronic response of waste activated sludge fermentation to titanium dioxide nanoparticles, Chin. J. Chem. Eng., 22 (2014) 1162–1167.
  40. J. Gonzalez-Estrella, R. Sierra-Alvarez, J.A. Field, Toxicity assessment of inorganic nanoparticles to acetoclastic and hydrogenotrophic methanogenic activity in anaerobic granular sludge, J. Hazard. Mater., 260 (2013) 278–285.
  41. F. Çeçen, N. Semerci, A.G. Geyik, Inhibition of respiration and distribution of Cd, Pb, Hg, Ag and Cr species in a nitrifying sludge, J. Hazard. Mater., 178 (2010) 619–627.
  42. O. Choi, Z.Q. Hu, Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria, Environ. Sci. Technol., 42 (2008) 4583–4588.
  43. R. Ganesh, J. Smeraldi, T. Hosseini, L. Khatib, B.H. Olson, D. Rosso, Evaluation of nanocopper removal and toxicity in municipal wastewaters, Environ. Sci. Technol., 44 (2010) 7808–7813.
  44. G.P.S. Marcone, Á.C. Oliveira, G. Almeida, G.A. Umbuzeiro, W.F. Jardim, Ecotoxicity of TiO2 to Daphnia similis under irradiation, J. Hazard. Mater., 211–212 (2012) 436–442.
  45. X. Zhu, Y. Chang, Y. Chen, Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna, Chemosphere, 78 (2010) 209–215.
  46. W.H. Fan, M.M. Cui, H. Liu, C. Wang, Z.W. Shi, C. Tan, X.P. Yang, Nano-TiO2 enhances the toxicity of copper in natural water to Daphnia magna, Environ. Pollut., 159 (2011) 729–734.