1. U. Hasan, Investigation of acrylic acid extractability from aqueous solution using tridodecyl amine extractant, Desal. Wat. Treat., 28 (2011) 189–195.
  2. A.T. Owen, P.D. Fawell, J.D. Swift, The preparation and ageing of acrylamide/acrylate copolymer flocculant solutions, Int. J. Miner. Process., 84 (2007) 3–14.
  3. J. Hu, J. Ma, W. Deng, Synthesis of alkali-soluble copolymer (butyl acrylate/acrylic acid) and its application in leather finishing agent, Eur. Polym. J., 44 (2008) 2695–2701.
  4. S. Thamizharasi, G. Srinivas, N. Sulochana, B.S.R. Reddy, Copolymerization of 4-chlorophenyl acrylate with methyl acrylate: synthesis, characterization, reactivity ratios, and their applications in the leather industry, J. Appl. Polym. Sci., 73 (1999) 1153–1160.
  5. E. Princi, S. Vicini, E. Pedemonte, V. Arrighi, I.J. McEwen, New polymeric materials for paper and textiles conservation. II. Grafting polymerization of ethyl acrylate/methyl methacrylate copolymers onto linen and cotton, J. Appl. Polym. Sci., 103 (2007) 90–99.
  6. J. Kadar, N. Heene-Würl, S. Hahn, J. Nagengast, M. Kehrer, N. Taccardi, D. Collias, P. Dziezok, P. Wasserscheid, J. Albert, Acrylic acid synthesis from lactide in a continuous liquid-phase process, ACS Sustainable Chem. Eng., 7 (2019) 7140–7147.
  7. K.I. Suresh, M. Jaikrishna, Synthesis of novel crosslinkable polymers by atom transfer radical polymerization of cardanyl acrylate, J. Polym. Sci., Part A: Polym. Chem., 43 (2005) 5953–5961.
  8. J.S.F. Pereira, P.A. Mello, F.A. Duarte, M. de Fátima P. Santos, R.C.L. Guimarães, G. Knapp, V.L. Dressler, É.M.M. Flores, Feasibility of microwave-induced combustion for digestion of crude oil vacuum distillation residue for chlorine determination, Energy Fuels, 23 (2009) 6015–6019.
  9. A. Li, N. Dong, M. He, T. Pan, Evaluation of performance in a combined UASB and aerobic contact oxidation process treating acrylic wastewater, Environ. Technol., 36 (2015) 807–814.
  10. Y.M. Gong, S.Z. Wang, X.Y. Tang, D.H. Xu, H.H. Ma, Supercritical water oxidation of acrylic acid production wastewater, Environ. Technol., 35 (2014) 907–916.
  11. U. Durán, O. Monroy, J. Gómez, F. Ramírez, Biological wastewater treatment for removal of polymeric resins in UASB reactor: influence of oxygen, Water Sci. Technol., 57 (2008) 1047.
  12. C.C. Wang, C.M. Lee, A.S. Wu, Acrylic acid removal from synthetic wastewater and industrial wastewater using Ralstonia solanacearum and Acidovorax avenae isolated from a wastewater treatment system manufactured with polyacrylonitrile fiber, Water Sci. Technol., 60 (2009) 3011.
  13. L. Tao, G. Zhao, R. Sun, Q. Wang, Combustion characteristics of particles of hazardous solid waste mixtures in a fixed bed, J. Hazard. Mater., 181 (2010) 305–314.
  14. L. Zhou, X. Jiang, J. Liu, Characteristics of oily sludge combustion in circulating fluidized beds, J. Hazard. Mater., 170 (2009) 175–179.
  15. W. Gong, F. Li, D. Xi, Supercritical water oxidation of acrylic acid production wastewater in transpiring wall reactor, Environ. Eng. Sci., 26 (2009) 131–136.
  16. K. Kim, S. Ihm, Heterogeneous catalytic wet air oxidation of refractory organic pollutants in industrial wastewaters: a review, J. Hazard. Mater., 186 (2011) 16–34.
  17. L. Oliviero, J. Barbier Jr., D. Duprez, A. Guerrero-Ruiz, B. Bachiller-Baeza, I. Rodriguez-Ramos, Catalytic wet air oxidation of phenol and acrylic acid over Ru/C and Ru–CeO2/C catalysts, Appl. Catal., B, 25 (2000) 267–275.
  18. J. Wei, Y. Song, X. Meng, J.-S. Pic, Optimization and analysis of homogenous Fenton process for the treatment of dry-spun acrylic fiber manufacturing wastewater, Desal. Wat. Treat., 56 (2015) 3036–3043.
  19. Z.-w. Wu, X.-c. Xu, H.-b. Jiang, R.-y. Zhang, S.-n. Song, C.-q. Zhao, F.-l. Yang, Evaluation and optimization of a pilot-scale catalytic ozonation–persulfate oxidation integrated process for the pretreatment of dry-spun acrylic fiber wastewater, RSC Adv., 7 (2017) 44059–44067.
  20. P. Yan, R.-c. Qin, J.-s. Guo, Q. Yu, Z. Li, Y.-p. Chen, Y. Shen, F. Fang, Net-zero-energy model for sustainable wastewater treatment, Environ. Sci. Technol., 51 (2016) 1017–1023.
  21. M. Bermejo, F. Cantero, M. Cocero, Supercritical water oxidation of feeds with high ammonia concentrations: pilot plant experimental results and modeling, Chem. Eng. J., 137 (2008) 542–549.
  22. C. Bouted, C. Ratanatamskul, Effects of temperature and HRT on performance of a novel insulated anaerobic filter (IAF) system incorporated with the waste heat input for building wastewater treatment, J. Environ. Manage., 206 (2018) 698–706.
  23. F. Jimenez-Espadafor, J.R. Portela, V. Vadillo, J. Sánchez-Oneto, J.A.B. Villanueva, M.T. García, E.J.M. de la Ossa, Supercritical water oxidation of oily wastes at pilot plant: simulation for energy recovery, Ind. Eng. Chem. Res., 50 (2011) 775–784.
  24. H. Ding, H. Jiang, Self-heating co-pyrolysis of excessive activated sludge with waste biomass: energy balance and sludge reduction, Bioresour. Technol., 133 (2013) 16–22.
  25. E. Tampio, S. Ervasti, T. Paavola, S. Heaven, C. Banks, J. Rintala, Anaerobic digestion of autoclaved and untreated food waste, Waste Manage., 34 (2014) 370–377.
  26. Z. Xu, S. Deng, Y. Yang, T. Zhang, Q. Cao, J. Huang, G. Yu, Catalytic destruction of pentachlorobenzene in simulated flue gas by a V2O5–WO3/TiO2 catalyst, Chemosphere, 87 (2012) 1032–1038.
  27. Y. Fan, X. Lu, Y. Ni, H. Zhang, M. Zhu, Y. Li, J. Chen, Catalytic destruction of chlorinated aromatic pollutants over mesoporous CuxMg1–xAl2O4 spinel oxides, Appl. Catal., B, 101 (2011) 606–612.
  28. J. Lichtenberger, M.D. Amiridis, Catalytic oxidation of chlorinated benzenes over V2O5/TiO2 catalysts, J. Catal., 223 (2004) 296–308.
  29. D. Jecha, V. Brummer, P. Lestinsky, J. Martinec, P. Stehlik, Effective abatement of VOC and CO from acrylic acid and related production waste gas by catalytic oxidation, Clean Technol. Environ. Policy, 16 (2014) 1–10.
  30. Q. Liu, R. Chen, M. Zeng, Z. Fei, X. Chen, Z. Zhang, J. Tang, M. Cui, X. Qiao, High-efficiency treatment of benzaldehyde residue using two-stage fluidized-bed/fixed-bed catalytic system, Environ. Technol., (2019) doi: 10.1080/09593330.2019.1588382.
  31. X. Chen, X. Xu, Z. Fei, X. Xie, J. Lou, J. Tang, M. Cui, X. Qiao, CeO2 nanodots embedded in a porous silica matrix as an active yet durable catalyst for HCl oxidation, Catal. Sci. Technol., 6 (2016) 5116–5123.
  32. Y. Dai, Z. Fei, X. Xu, X. Chen, J. Tang, M. Cui, X. Qiao, Oxygen consumption rate model in HCl oxidation over a supported CuO-CeO2 composite oxide catalyst under lean oxygen condition, Can. J. Chem. Eng., 94 (2016) 1140–1147.
  33. V.F. Shvets, V.N. Sapunov, R.A. Kozlovskiy, A.I. Luganskiy, A.V. Gorbunov, F.S. Sovetin, T.N. Gartman, Cracking of heavy oil residues in a continuous flow reactor, initiated by atmospheric oxygen, Chem. Eng. J., 329 (2017) 275–282.
  34. L. Matejová, P. Topka, K. Jirátová, O. Solcová, Total oxidation of model volatile organic compounds over some commercial catalysts, Appl. Catal., A, 443 (2012) 40–49.
  35. I. Shizas, D.M. Bagley, Experimental determination of energy content of unknown organics in municipal wastewater streams, J. Energy Eng., 130 (2004) 45–53.
  36. E.S. Heidrich, T.P. Curtis, J. Dolfing, Determination of the internal chemical energy of wastewater, Environ. Sci. Technol., 45 (2011) 827–832.
  37. G. Mininni, A. Sbrilli, E. Guerriero, M. Rotatori, Dioxins and furans formation in pilot incineration tests of sewage sludge spiked with organic chlorine, Chemosphere, 54 (2004) 1337–1350.
  38. G.A. Jiang, Y. Zhao, B.Z. Li, H.S. Guo, Treatment of acid brilliant scarlet dye wastewater by ozone catalytic oxidation over activated carbon-based catalyst, Mod. Chem. Ind., 38 (2018) 124–127.
  39. X. He, M. Chen, R. Chen, X. Zhu, Q. Liao, D. Ye, B. Zhang, W. Zhang, Y. Yu, A solar responsive photocatalytic fuel cell with the membrane electrode assembly design for simultaneous wastewater treatment and electricity generation, J. Hazard. Mater., 358 (2018) 346–354.
  40. R.M. Serikawa, T. Usui, T. Nishimura, H. Sato, S. Hamada, H. Sekino, Hydrothermal flames in supercritical water oxidation: investigation in a pilot scale continuous reactor, Fuel, 81 (2002) 1147–1159.
  41. B.K. Gullett, K. Raghunathan, Observations on the effect of process parameters on dioxin/furan yield in municipal waste and coal systems, Chemosphere, 34 (1997) 1027–1032.