References

  1. A.S. Hafshejani, A. Hajiannia, S. Eslamian, Effects of homogeneous hydrocarbonic contamination on the bearing capacity of in-situ concrete piles buried in silty sand, Int. J. Hydrol. Sci. Technol., 7 (2017) 124–133.
  2. C. Streche, D.M. Cocârţă, I.A. Istrate, A.A. Badea, Decontamination of petroleum-contaminated soils using the electrochemical technique: remediation degree and energy consumption, Sci. Rep., 8 (2018) 3272.
  3. E. Lombi, W.W. Wenzel, D.C. Adriano, Soil contamination, risk reduction and remediation, Land Contam. Reclam., 6 (1998) 183–197.
  4. X.H. Zhang, Point Sources of Pollution: Local Effects and Control, Vol. II, Remediation Techniques for Soil and Groundwater, Q. Yi, Ed., Encyclopedia of Life Support Systems, UNESCO, EOLSS Publishers Co. Ltd., Oxford, United Kingdom, 2009, pp. 350–365.
  5. Technical Field Guidance, Corrective Action - Soil Remediation, Available at: https://www.dec.ny.gov › docs › 1x62, Accessed on May 9, 2018.
  6. H.A. Al-Sanad, W.K. Eid, N.F. Ismael, Geotechnical properties of oil-contaminated Kuwaiti sand, J. Geotech. Eng., 121 (1995) 407–412.
  7. Guidelines for Assessing and Managing Petroleum Hydrocarbon Contaminated Sites in New Zealand Module 7 - Site Management, ME 1074, 1999, Available at: https://www.mfe.govt.nz/publications/hazards/guidelines-assessing-andmanaging-petroleum-hydrocarbon-contaminated-sites-new, Accessed on 15 February, 2018.
  8. Analysis of Brownfields Cleanup Alternatives, USEPA Cooperative Agreement # BF00E00881-0, 2013, Available at: https://www.romeoville.org/DocumentCenter/View/413/Analysis-of-Brownfields-Clean-Up-Alternatives-PDF, Accessed on September 7, 2017.
  9. B.C. O’Kelly, Geotechnical properties of municipal water treatment sludge incorporating a coagulant, Can. Geotech. J., 45 (2008) 715–725.
  10. B.C. O’Kelly, M.E. Quille, Shear strength properties of water treatment residues, Proc. Inst. Civ. Eng. Geotech. Eng., 163 (2010) 23–35.
  11. M. Balkaya, Evaluation of the geotechnical properties of alum sludge, zeolite, and their mixtures for beneficial usage, Environ. Prog. Sustainable Energy, 34 (2015) 1028–1037.
  12. A.O. Babatunde, L.G. Jeyakumar, Y. Zhao, Constructed wetlands using aluminum-based drinking water treatment sludge as P removing substrate: should aluminum release be a concern?, J. Environ. Monit., 13 (2011) 1775–1783.
  13. Y.F. Zhou, R.J. Haynes, Removal of Pb(II), Cr(III) and Cr(VI) from aqueous solutions using alum-derived water treatment sludge, J. Water Air Soil Pollut., 215 (2011) 631–643.
  14. S.W. O’Neill, A.P. Davis, Water treatment residual as a bioretention amendment for phosphorus. I. Evaluation studies, J. Environ. Eng., 138 (2012) 318–327.
  15. M. A. Md Nor, K.K. Ong, S. Mohamad, N.A. Ahmad Nasaruddin, N.L.A. Jamari, W.M.Z. Wan Yunus, Kinetic study of a cationic dye adsorption by dewatered alum sludge, J. Mater. Res. Innovations, 18 (2014) S6-140–S6-143.
  16. Y. Yang, D. Tomlinson, S. Kennedy, Y.Q. Zhao, Dewatered alum sludge: a potential adsorbent for phosphorus removal, Water Sci. Technol., 54 (2006) 207–213.
  17. A.O. Babatunde, Y.Q. Zhao, Y. Yang, P. Kearney, From fills to filter: insights into the reuse of dewatered alum sludge as a filter media in a constructed wetland, J. Residuals Sci. Technol., 4 (2007) 147–152.
  18. Y. Zhang, L. Yang, D. Wang, T. Zhang, Resource utilization of water treatment residual sludge (WTRS): effective defluoridation from aqueous solution, Desal. Wat. Treat., 55 (2014) 448–462.
  19. L. Qi, R. Cheng, H. Wang, X. Zheng, G. Zhang, G. Li, Recycle of alum sludge with PAC (RASP) for drinking water treatment, Desal. Wat. Treat., 25 (2011) 170–175.
  20. M.C. Wang, T. Tseng, Permeability behavior of a water treatment sludge, J. Geotech. Eng., 119 (1993) 1672–1677.
  21. B.C. O’Kelly, Landfill disposal of alum water treatment residues, some pertinent geoengineering properties, J. Residuals Sci. Technol., 7 (2010) 95–113.
  22. D. Caniani, S. Masi, I.M. Mancini, E. Trulli, Innovative reuse of drinking water sludge in geo-environmental applications, Waste Manage., 33 (2013) 1461–1468.
  23. M. Balkaya, Evaluation of the use of alum sludge as hydraulic barrier layer and daily cover material in landfills: a finite element analysis study, Desal. Wat. Treat., 57 (2016) 2400–2412.
  24. A.M.A. Nasr, Experimental and theoretical studies for the behavior of strip footing on oil-contaminated sand, J. Geotech. Geoenviron. Eng., 135 (2009) 1814–1822.
  25. H.A. Al-Sanad, N.F. Ismael, Aging effects on oil contaminated Kuwaiti sand, J. Geotech. Geoenviron. Eng., 123 (1997) 290–293.
  26. S. Grimaz, S. Allen, J.R. Stewart, G. Dolcetti, Fast prediction of the evolution of oil penetration into the soil immediately after an accidental spillage for rapid-response purposes, Chem. Eng. Trans., 13 (2008) 227–234.
  27. Q. Zhang, G. Wang, N. Sugiura, M. Utsumi, Z. Zhang, Y. Yang, Distribution of petroleum hydrocarbons in soils and the underlying unsaturated subsurface at an abandoned petrochemical site, North China, Hydrol. Processess, 28 (2014) 2185–2191.
  28. D.B. Al-Duwaisan, A.A. Al-Naseem, Characterization of Oil Contaminated Soil Kuwait Oil Lakes, 2nd International Conference on Environmental Science and Technology IPCBEE, Vol. 6, IACSIT Press, Singapore, 2011, pp. 439–442.
  29. A.K. Nazir, Effect of motor oil contamination on geotechnical properties of over consolidated clay, Alex. Eng. J., 50 (2011) 331–335.
  30. R.K. Rowe, Barrier Systems, in: Geotechnical and Geoenvironmental Engineering Handbook, Springer Science+Business Media, New York, NY, 2001, pp. 739–788.
  31. M.S. Hossain, M.A. Haque, Stability analyses of municipal solid waste landfills with decomposition, Geotech. Geol. Eng., 27 (2009) 659–666.
  32. U.S. Army Corps of Engineers, Engineering and Design Introduction to Probability and Reliability Methods for Use in Geotechnical Engineering, Engineer Technical Letter No. 1110– 2-547, Department of the Army U.S. Army Corps of Engineers, Washington, D.C., 1995, pp. 1–11.
  33. R.B.J. Brinkgreve, E. Engin, W.M. Swolfs, Plaxis 2D, Reference Manual, Delft, 2012.
  34. M. Trivellato, Geotechnical Slope Stability of the Este MSW Landfill, M.Sc Thesis, Universita degli Studi di, Padova, 2014.
  35. Z. Guodong, R. Qingfang, C. Fei, Stability Analysis of Landfill Closure Cover System Based on the Finite Element Method, Proceedings of 2010 International Symposium on Multi-field Coupling Theory of Rock and Soil Media and Its Applications, Chengdu City, 2010, pp. 764–769.
  36. B.M. Das, Principles of Geotechnical Engineering, 4th ed., Pws, Boston, MA, 1997.
  37. M. Khamehchiyan, A.H. Charkhabi, M. Tajik, Effects of crude oil contamination on geotechnical properties of clayey and sandy soils, Eng. Geol., 89 (2007) 220–229.
  38. A. Lees, Simulation of Geogrid Stabilisation by Finite Element Analysis, 19th International Conference of Soil Mechanics and Geotechnical Engineering, Seoul, South Korea, September 17–21, 2017, pp. 1377–1380.
  39. P.V. Divya, B.V.S. Viswanadham, J.P. Gourc, Influence of geomembrane on the deformation behaviour of clay-based landfill covers, Geotext. Geomembr., 34 (2012) 158–171.
  40. A. Pandey, Y.K. Bind, Effects of oil contamination on geotechnical properties of alluvial soil Naini, Allahabad, Int. J. Innovative Technol. Exploring Eng., 3 (2014) 39–42.
  41. M.M. Amro, M.S. Benzagouta, W. Karnanda, Investigation on crude oil penetration depth into soils, Arabian J. Geosci., 6 (2013) 873–880.
  42. A.S. Hafshejani, A. Hajiannia, A.G. Noroozi, M.T. Dorobati, Effects of one-dimensional oil contamination dispersion on the load bearing capacity of in-situ concrete piles in SM soils, Electronic J. Geotech. Eng., 21 (2016) 2857–2869.
  43. R.M. Abousnina, A. Manalo, J. Shiau, W. Lokuge, An overview on oil contaminated sand and its engineering applications, Int. J. Geomate, 10 (2016) 1615–1622.
  44. Z.A. Rahman, U. Hamzah, M.R. Taha, N.S. Ithnain, N. Ahmad, Influence of oil contamination on geotechnical properties of basaltic residual soil, Am. J. Appl. Sci., 7 (2010) 954–961.
  45. M. Kermani, T. Ebadi, The effect of oil contamination on the geotechnical properties of fine-grained soils, Soil Sediment Contam., 21 (2012) 655–671.
  46. American Society of Civil Engineers, Minimum Design Loads for Buildings and Other Structures, ASCE/SEI 7-05, 2006.
  47. TS 498, Design Loads for Buildings, 1997 (in Turkish).
  48. E.C. Shin, J.B. Lee, B.M. Das, Bearing capacity of a model scale footing on crude oil-contamination sand, Geotech. Geol. Eng. J., 17 (1999) 123–132.
  49. N.J. Meegoda, P. Ratnaweera, Compressibility of contaminated fine grained soils, Geotech. Test. J., 17 (1994) 101–112.