1. C. Byrne, G. Subramanian, S.C. Pillai, Recent advances in photocatalysis for environmental applications, J. Environ. Chem. Eng., 6 (2018) 3531–3555.
  2. A. Cesaro, V. Belgiorno, Removal of endocrine disruptors from urban wastewater by advanced oxidation processes (AOPs): a review, OBJ, 10 (2016) 151–172.
  3. B. Petrie, R. Barden, B. Kasprzyk-Hordern, A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring, Water Res., 72 (2015) 3–27.
  4. P. Kay, S.R. Hughes, J.R. Ault, A.E. Ashcroft, L.E. Brown, Widespread, routine occurrence of pharmaceuticals in sewage effluent, combined sewer overflows and receiving waters, Environ. Pollut., 220 (2017) 1447–1455.
  5. N. Nakada, S. Hanamoto, M.D. Jürgens, A.C. Johnson, M.J. Bowes, H. Tanaka, Assessing the population equivalent and performance of wastewater treatment through the ratios of pharmaceuticals and personal care products present in a river basin: application to the river Thames basin, UK, Sci. Total Environ., 575 (2017) 1100–1108.
  6. M. Pera-Titus, V. García-Molina, M.A. Baños, J. Giménez, S. Esplugas, Degradation of chlorophenols by means of advanced oxidation processes: a general review, Appl. Catal., B, 47 (2004) 219–256.
  7. L.V. Bora, R.K. Mewada, Visible/solar light active photocatalysts for organic effluent treatment: fundamentals, mechanisms and parametric review, Renewable Sustainable Energy Rev., 76 (2017) 1393–1421.
  8. B. Liu, M. Qiao, Y. Wang, L. Wang, Y. Gong, T. Guo, X. Zhao, Persulfate enhanced photocatalytic degradation of bisphenol A by g-C3N4 nanosheets under visible light irradiation, Chemosphere, 189 (2017) 115–122.
  9. M. Muruganandham, R.P.S. Suri, M. Sillanpaa, J.J. Wu, B. Ahmmad, S. Balachandran, M. Swaminathan, Recent developments in heterogeneous catalyzed environmental remediation processes, J. Nanosci. Nanotechnol., 14 (2014) 1898–1910.
  10. M.D.C. Elton, Petit towards the use of metal–organic frameworks for water reuse: a review of the recent advances in the field of organic pollutants removal and degradation and the next steps in the field, J. Mater. Chem., 4 (2016) 3565–3565.
  11. K. Ishibashi, A. Fujishima, T. Watanabe, K. Hashimoto, Quantum yields of active oxidative species formed on TiO2 photocatalyst, J. Photochem. Photobiol., 134 (2000) 139–142.
  12. X. Huang, S. Han, W. Huang, X. Liu, Enhancing solar cell efficiency: the search for luminescent materials as spectral converters, Chem. Soc. Rev., 42 (2013) 173–201.
  13. K. Rajeshwar, N.R. de Tacconi, C.R. Chenthamarakshan, Semiconductor-based composite materials: preparation, properties, and performance, Chem. Mater., 13 (2001) 2765–2782.
  14. M. Jakob, H. Levanon, P.V. Kamat, Charge distribution between UV-irradiated TiO2 and gold nanoparticles: determination of shift in the fermi leve, Nano Lett., 3 (2003) 353–358.
  15. H. Tada, A. Hattori, Y. Tokihisa, K. Imai, N. Tohge, S. Ito, A patterned-TiO2/SnO2 bilayer type photocatalyst, J. Phys. Chem., 104 (2000) 4585–4587.
  16. S.Y. Lu, D. Wu, Q.I. Wang, J. Yan, A.G. Buekens, K.F. Cen, Photocatalytic decomposition on nano-TiO2: destruction of chloroaromatic compounds, Chemosphere, 82 (2011) 1215–1224.
  17. D. Chatterjee, S. Dasgupta, Visible light induced photocatalytic degradation of organic pollutants, J. Photochem. Photobiol., 6 (2005) 186–205.
  18. H. Huang, X. Han, X. Li, S.C. Wang, P.K.Y. Zhang, Fabrication of multiple heterojunctions with tunable visible-light-active photocatalytic reactivity in BiOBr-BiOI full-range composites based on microstructure modulation and band structures, ACS Appl. Mater. Interface, 7 (2015) 482–492.
  19. H. Adamu, P. Dubey, J.A. Anderson, Probing the role of thermally reduced graphene oxide in enhancing performance of TiO2 in photocatalytic phenol removal from aqueous environments, Chem. Eng. J., 284 (2016) 380–388.
  20. A.K. Geim, K.S. Novoselov, The rise of graphene, Nat. Mater., 6 (2007) 183–191.
  21. A.K. Geim, Graphene: status and prospects, Science, 324 (2009) 1530–1534.
  22. M.J. Allen, V.C. Tung, R.B. Kaner, Honeycomb carbon: a review of graphene, Chem. Rev., 110 (2010) 132–145.
  23. H. Zhang, X. Lv, Y. Li, Y. Wang, J. Li, P25-graphene composite as a high performance photocatalyst, ACS Nano, 4 (2010) 380–386.
  24. Y. Zhang, Z.-R. Tang, X. Fu, Y.-J. Xu, TiO2−graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2−graphene truly different from other TiO2−carbon composite materials?, ACS Nano, 4 (2010) 7303–7314.
  25. E. Frackowiak, F. Béguin, Carbon materials for the electrochemical storage of energy in capacitors, Carbon, 39 (2001) 937–950.
  26. Z. Xiong, L.L. Zhang, J. Ma, X.S. Zhao, Photocatalytic degradation of dyes over graphene–gold nanocomposites under visible light irradiation, Chem. Commun., 46 (2010) 6099–6101.
  27. M. Kushalatha, G. Vidya, K. Chandrakant, Photo biodegradation of halogenated aromatic pollutants, ABB, 1 (2010) 238–240.
  28. A.H. El-Sheikh, Y.S. Al-Degs, A.P. Newman, D.E. Lynch, Oxidized activated carbon as support for titanium dioxide in UV-assisted degradation of 3-chlorophenol, Sep. Purif. Technol., 54 (2007) 117–123.
  29. F. Khodadadeh, P.A. Azar, M.S. Tehrani, N. Assi, Photocatalytic degradation of 2,4,6-ttrichlorophenol with CdS nanoparticles synthesis by microwave-assisted sol-gel method, Int. J. Nano Dimens., 7 (2016) 263–269.
  30. H. Benbachir, H. Gaffour, M. Mokhtari, Photodegradation of 2,4,6-trichlorophenol using natural hematite modified with chloride of zirconium oxide, React. Kinet. Mech. Catal., 122 (2017) 635–653.
  31. X. Hu, H. Ji, F. Chang, Y. Luo, Simultaneous photocatalytic Cr(VI) reduction and 2, 4, 6-TCP oxidation over g-C3N4 under visible light irradiation, Catal. Today, 224 (2014) 34–40.
  32. K.H. Choi, J. Min, S.Y. Park, B.J. Park, J.S. Jung, Enhanced photocatalytic degradation of tri-chlorophenol by Fe3O4@TiO2@Au photocatalyst under visible-light, Ceram. Int., 45 (2019) 9477–9482.
  33. J. Yang, S. Cui, J.Q. Qiao, H.Z. Lian, The photocatalytic dehalogenation of chlorophenols and bromophenols by cobalt doped nano TiO2, J. Mol. Catal. A: Chem., 395 (2014) 42–51.