1. C.G. Daughton, Non-regulated water contaminants: emerging research, Environ. Impact Assess. Rev., 24 (2004) 711–732.
  2. C.G. Daughton, T.A. Ternes, Pharmaceuticals and personal care products in the environment: agents of subtle change?, Environ. Health Perspect., 107 (1999) 907–937.
  3. K. Kummerer, Present Knowledge and Need for Further Research, In: Pharmaceuticals in the Environment, Springer Verlag, Heidelberg, 2001, pp. 239–245.
  4. S. Sulaiman, T. Shahwan, Mefenamic acid stability and removal from wastewater using bentonite-supported nanoscale zerovalent iron and activated charcoal, Desal. Wat. Treat., 97 (2017) 175–183.
  5. J. Theron, J.A. Walker, T.E. Cloete, Nanotechnology and water treatment: applications and emerging opportunities, Crit. Rev. Solid State, 34 (2008) 43–69.
  6. X.-q. Li, D.W. Elliott, W.-x. Zhang, Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects, Crit. Rev. Solid State, 31 (2006) 111–122.
  7. S.M. Ponder, J.G. Darab, T.E. Mallouk, Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zerovalent iron, Environ. Sci. Technol., 34 (2000) 2564–2569.
  8. T. Shahwan, Ç. Üzüm, A.E. Eroglu, I. Lieberwirth, Synthesis and characterization of bentonite/iron nanoparticles and their application as adsorbent of cobalt ions, Appl. Clay Sci., 47 (2010) 257–262.
  9. Ç. Üzüm, T. Shahwan, A.E. Eroglu, K.R. Hallam, T.B. Scott, I. Lieberwirth, Synthesis and characterization of kaolinitesupported zero-valent iron nanoparticles and their application for the removal of aqueous Cu2+ and Co2+ ions, Appl. Clay Sci., 43 (2009) 172–181.
  10. E. Eren, Adsorption performance and mechanism in binding of azo dye by raw bentonite, CLEAN – Soil Air Water, 38 (2010) 758–763.
  11. V.K. Gupta, Suhas, Application of low-cost adsorbents for dye removal – a review, J. Environ. Manage., 90 (2009) 2313–2342.
  12. S. Sulaiman, M. Khamis, S. Nir, F. Lelario, L. Scrano, S.A. Bufo, R. Karaman, Stability and removal of spironolactone from wastewater, J. Environ. Sci. Health., Part A, 50 (2015) 1127–1135.
  13. V. Laurian, I. Silvia, M. Dana, A. Marcela, M. Daniela-Lucia, Determination of spironolactone and canrenone in human plasma by high-performance liquid chromatography with mass spectrometry detection, Croat. Chem. Acta, 84 (2011) 361–366.
  14. S.A. Doggrell, L. Brown, The spironolactone renaissance, Expert Opin. Invest. Drugs, 10 (2001) 243–254.
  15. S.J. Lloyd, V.F. Mauro, Spironolactone in the treatment of congestive heart failure, Ann. Pharmacother., 34 (2000) 1336–1340.
  16. R. Al-Saed, O. Zimmo, Process performance evaluation of the contact stabilization system at Birzeit University, Int. J. Environ. Pollut., 21(2004) 511–517.
  17. American Public Health Association, Standard Methods for the Examination of Water and Wastewater, 21st ed., APHA, Washington, D.C., USA, 2005.
  18. M. Rafatullah, O. Sulaiman, R. Hashim, A. Ahmad, Adsorption of methylene blue on low-cost adsorbents: a review, J. Hazard. Mater., 177 (2010) 70–80.
  19. H.j. Kim, H.-J. Hong, Y.-J. Lee, H.-J. Shin, J.-W. Yang, Degradation of trichloroethylene by zero-valent iron immobilized in cationic exchange membrane, Desalination, 223 (2008) 212–220.
  20. J.J. Zhan, T. Zheng, G. Piringer, C. Day, G.L. McPherson, Y.F. Lu, K. Papadopoulos, V.T. John, Transport characteristics of nanoscale functional zerovalent iron/silica composites for in situ remediation of trichloroethylene, Environ. Sci. Technol., 42 (2008) 8871–8876.
  21. G.D. Champion, G.G. Graham, Pharmacokinetics of nonsteroidal anti-inflammatory drugs, Aust. N. Z. J. Med., 8 (1978) 94–100.
  22. United States Environmental Protection Agency (USEPA), Wastewater Treatment Manuals: Primary, Secondary and Tertiary Treatment, Author: Washington, D.C., 1997.
  23. Y. Pramar, V.D. Gupta, T. Zerai, Quantitation of spironolactone in the presence of canrenone using high-performance liquid chromatography, Drug Dev. Ind. Pharm., 17 (1991) 747–761.
  24. D.-M. Huang, T.-Z. Zhang, F.-J. Cui, W.-J. Sun, L.-M. Zhao, M.-Y. Yang, Y.-J. Wang, Simultaneous identification and quantification of canrenone and 11-α-hydroxy-canrenone by LC-MS and HPLC-UVD, J. Biomed. Biotechnol., 2011 (2011) 7 p, doi: 10.1155/2011/917232.
  25. L.E. Ramsay, J.R. Shelton, D. Wilkinson, M.J. Tidd, Canrenonethe principal active metabolite of spironolactone, J. Clin. Pharmacol., 3 (1976) 607–612.
  26. C. Noubactep, S. Caré, R.A. Crane, Nanoscale metallic iron for environmental remediation: prospects and limitations, Water Air Soil Pollut., 223 (2012) 1363–1382.
  27. S.M. Ponder, J.G. Darab, J. Bucher, D. Caulder, I. Craig, L. Davis, N. Edelstein, W. Lukens, H. Nitsche, L.F. Rao, D.K. Shuh, T.E. Mallouk, Surface chemistry and electrochemistry of supported zerovalent iron nanoparticles in the remediation of aqueous metal contaminants, Chem. Mater., 13 (2001) 479–486.
  28. W. Stumm, J.J. Morgan, Aquatic Chemistry, 3rd ed., Wiley, New York, 1996.
  29. C.M. Wang, D.R. Baer, J.E. Amonette, M.H. Engelhard, J. Antony, Y. Qiang, Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles, J. Am. Chem. Soc., 131(2009) 8824–8832.
  30. E.E. Carpenter, S. Calvin, R.M. Stroud, V.G. Harris, Passivated iron as core-shell nanoparticles, Chem. Mater., 15 (2003) 3245–3246.
  31. W. Liang, C. Dai, X. Zhou, Y. Zhang, Application of zero-valent iron nanoparticles for the removal of aqueous zinc ions under various experimental conditions, PLoS One, 9 (2014) 1–9.
  32. B.A. Balko, P.G. Tratnyek, Photoeffects on the reduction of carbon tetrachloride by zero-valent iron, J. Phys. Chem. B, 102 (1998) 1459–1465.
  33. A. Ausavasukhi, T. Sooknoi, Oxidation of tetrahydrofuran to butyrolactone catalyzed by iron-containing clay, Green Chem., 17 (2015) 435–441.
  34. A. Tabak, B. Afsin, B. Caglar, E. Koksal, Characterization and pillaring of a Turkish bentonite (Resadiye), J. Colloid Interface Sci., 313 (2007) 5–11.
  35. Z.-x. Chen, X.-y. Jin, Z.L. Chen, M. Megharaj, R. Naidu, Removal of methyl orange from aqueous solution using bentonitesupported nanoscale zero-valent iron, J. Colloid Interface Sci., 363 (2011) 601–607.
  36. Ç. Üzüm, T. Shahwan, A.E. Eroglu, K.R. Hallam, T.B. Scott, I. Lieberwirth, Synthesis and characterization of kaolinitesupported zero-valent iron nanoparticles and their application for the removal of aqueous Cu2+ and Co2+ ions, Appl. Clay Sci., 43 (2009) 172–181.
  37. X. Zhang, S. Lin, X.-Q. Lu, Z.-I. Chen, Removal of Pb(II) from water using synthesized kaolin supported nanoscale zerovalent iron, Chem. Eng. J., 163 (2010) 243–248.
  38. L.N. Shi, X. Zhang, Z.L. Chen, Removal of chromium (VI) from wastewater using bentonite-supported nanoscale zero-valent iron, Water Res., 45 (2011) 866–892.
  39. A.T. Sdiri, T. Higashi, F. Jamoussi, Adsorption of copper and zinc onto natural clay in single and binary systems, Int. J. Environ. Sci. Technol., 11 (2014) 1081–1092.
  40. T. Shahwan, Sorption kinetics: obtaining a pseudo-second order rate equation based on a mass balance approach, J. Environ. Chem. Eng., 2 (2014) 1001–1006.
  41. H. Kim, H.J. Hong, J. Jung, S.H. Kim, J.W. Yang, Degradation of trichloroethylene (TCE) by nanoscale zero-valent iron (nZVI) immobilized in alginate bead, J. Hazard. Mater., 176 (2010) 1038–1043.
  42. A. Afkhami, R. Moosavi, Adsorptive removal of Congo red, a carcinogenic textile dye, from aqueous solutions by maghemite nanoparticles, J. Hazard. Mater., 15 (2010) 398–403.
  43. R. Venkatapathy, D.G. Bessingpas, S. Canonica, J.A. Perlinger, Kinetic models for trichloroethylene transformation by zerovalent iron, Appl. Catal., B., 37 (2002) 139–159.
  44. M.H. Al-Jabari, S. Sulaiman, S. Ali, R. Barakat, A. Mubarak, S.A. Khan, Adsorption study of levofloxacin on reusable magnetic nanoparticles: kinetics and antibacterial activity, J. Mol. Liq., 291 (2019), doi: 10.1016/j.molliq.2019.111249.
  45. Z. Chia, Z. Wang, H. Chua, P. Bina, L. Lucian, Bentonitesupported nanoscale zero-valent iron granulated electrodes for industrial wastewater remediation, RSC Adv., 7 (2017) 44605–44613.
  46. M. Al-Jabari, I. Khalid, S. Sulaiman, I. Alawi, J. Shilo, Synthesis, characterization, kinetic and thermodynamic investigation of silica nanoparticles and their application in Mefenamic acid removal from aqueous solution, Desal. Wat. Treat., 129 (2018) 160–167.