References

  1. R. Newman, Antibiotics in the Environment: A Lose-Lose Situation?, APS Group, 2000, Available at: aps.group.shef.ac.uk.
  2. K. Kümmerer, Significance of antibiotics in the environment, J. Antimicrob. Chemother., 52 (2003) 5–7.
  3. B. Halling-Sørensen, S. Nielsen, P.F. Lanzky, F. Ingerslev, H.C.H. Lützhøft, S.E. Jørgensen, Occurrence, fate and effects of pharmaceutical substances in the environment-a review, Chemosphere, 36 (1998) 357–393.
  4. J. Tolls, Sorption of veterinary pharmaceuticals in soils: a review, Environ. Sci. Technol., 35 (2001) 3397–3406.
  5. K. Kümmerer, Antibiotics in the aquatic environment-a reviewpart I, Chemosphere, 75 (2009) 417–434.
  6. E.S. Elmolla, M. Chaudhuri, Comparison of different advanced oxidation processes for treatment of antibiotic aqueous solution, Desalination, 256 (2010) 43–47.
  7. A.L. Capriotti, C. Cavaliere, S. Piovesana, R. Samperi, A. Laganà, Multiclass screening method based on solvent extraction and liquid chromatography–tandem mass spectrometry for the determination of antimicrobials and mycotoxins in egg, J. Chromatogr. A, 126 (2012) 84–90.
  8. M. Malakootian, K. Yaghmaeian, M. Malakootian, Wood ash effectiveness in cadmium removal from paint industrial effluent, Pak. J. Biol. Sci., 9 (2006) 248–252.
  9. R.C. Wei, F. Ge, S. Huang, M. Chen, R. Wang, Occurrence of veterinary antibiotics in animal wastewater and surface water around farms in Jiangsu Province, China, Chemosphere, 82 (2011) 1408–1414.
  10. N.M. Vieno, T. Tuhkanen, L. Kronberg, Analysis of neutral and basic pharmaceuticals in sewage treatment plants and in recipient rivers using solid phase extraction and liquid chromatography–tandem mass spectrometry detection, J. Chromatogr. A, 1134 (2006) 101–111.
  11. N. Le-Minh, S.J. Khan, J.E. Drewes, R.M. Stuetz, Fate of antibiotics during municipal water recycling treatment processes, Water Res., 44 (2010) 4295–4323.
  12. H.Y. Wang, G.K. Zhang, Y.Y. Gao, Photocatalytic degradation of metronidazole in aqueous solution by niobate K6Nb10.8O30, Nat. Sci., 15 (2010) 345–349.
  13. R.F. Dantas, O. Rossiter, A.K.R. Teixeira, A.S.M. Simões, V.L. da Silva, Direct UV photolysis of propranolol and metronidazole in aqueous solution, Chem. Eng. J., 158 (2010) 143–147.
  14. A.G. Gonçalves, J.J. Órfão, M.F. Pereira, Catalytic ozonation of sulphamethoxazole in the presence of carbon materials: catalytic performance and reaction pathways, J. Hazard. Mater., 239 (2012) 167–174.
  15. P.S. Ardekani, H. Karimi, M. Ghaedi, A. Asfaram, M.K. Purkait, Ultrasonic assisted removal of methylene blue on ultrasonically synthesized zinc hydroxide nanoparticles on activated carbon prepared from wood of cherry tree: experimental design methodology and artificial neural network, J. Mol. Liq., 299 (2017) 114–124.
  16. M. Dastkhoon, M. Ghaedi, A. Asfaram, A. Goudarzi, S.M. Mohammadi, S. Wang, Improved adsorption performance of nanostructured composite by ultrasonic wave: optimization through response surface methodology, Isotherm and kinetic studies, Ultrason. Sonochem., 37 (2016) 94–105.
  17. M. Dastkhoon, M. Ghaedi, A. Asfaram, M.H.A. Azqhandi, M.K. Purkait, Simultaneous removal of dyes onto nanowires adsorbent use of ultrasound assisted adsorption to clean waste water: chemometrics for modeling and optimization, multicomponent adsorption and kinetic study, Chem. Eng. Res. Des., 124 (2017) 222–237.
  18. H. Mazaheri, M. Ghaedi, M.H.A. Azqhandi, A. Asfaram, Application of machine/statistical learning, artificial intelligence and statistical experimental design for the modeling and optimization of methylene blue and Cd(II) removal from a binary aqueous solution by natural walnut carbon, Phys. Chem. Chem. Phys., 19 (2017) 11299–11317.
  19. M. Malakootian, M. Pourshaban-Mazandarani, H. Hossaini, M.H. Ehrampoush, Preparation and characterization of TiO2 incorporated 13X molecular sieves for photocatalytic removal of acetaminophen from aqueous solutions, Process Saf. Environ. Prot., 104 (2016) 334–345.
  20. R. Momenzadeh, M. Malakootian, K. Yaghmaeian, Efficiency of titanium dioxide photocatalytic activity in removing anionic surfactant of sodium dodecyl sulfate from waste water, Koomesh, 16 (2015) 648–654.
  21. M. Malakootian, N. Jaafarzadeh, A. Dehdarirad, Efficiency investigation of photo-Fenton process in removal of sodium dodecyl sulphate from aqueous solutions, Desal. Wat. Treat., 57 (2016) 24444–24449.
  22. M. Malakootian, S. Dowlatshahi, M.H. Cholicheh, Reviewing the photocatalytic processes efficiency with and without hydrogen peroxide in cyanide removal from aqueous solutions, J. Mazandaran Univ. Med. Sci., 23 (2013) 69–78.
  23. M. Malakootian, A. Nasiri, A. Asadipour, E. Kargar, Facile and green synthesis of ZnFe2O4@CMC as a new magnetic nanophotocatalyst for ciprofloxacin degradation from aqueous media, Process Saf. Environ. Prot., 129 (2019) 138–151.
  24. M.A. Gharaghani, M. Malakootian, Photocatalytic degradation of the antibiotic ciprofloxacin by ZnO nanoparticles immobilized on a glass plate, Desal. Wat. Treat., 89 (2017) 304–314.
  25. K.R. Zadeh, M. Malakootian, O3/UV photo-oxidation for the removal of reactive yellow 3 dye from wastewater, Desal. Wat. Treat., 81 (2017) 322–326.
  26. M. Malakootian, A. Nasiri, M.A. Gharaghani, Photocatalytic degradation of ciprofloxacin antibiotic by TiO2 nanoparticles immobilized on a glass plate, Chem. Eng. Commun., 207 (2020) 56–72.
  27. M. Malakootian, H. Mahdizadeh, A. Dehdarirad, M.A. Gharghani, Photocatalytic ozonation degradation of ciprofloxacin using ZnO nanoparticles immobilized on the surface of stones, J. Dispersion Sci. Technol., 40 (2019) 846–854.
  28. A. Nasiri, F. Tamaddon, M.H. Mosslemin, M.A. Gharaghani, A. Asadipour, New magnetic nanobiocomposite CoFe2O4@methycellulose: facile synthesis, characterization, and photocatalytic degradation of metronidazole, J. Mater. Sci. - Mater. Electron., 30 (2019) 8595–8610.
  29. T. Robinson, G. McMullan, R. Marchant, P. Nigam, Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative, Bioresour. Technol., 77 (2001) 247–255.
  30. J.L. Rodríguez-Gil, M. Catalá, S.G. Alonso, R.R. Maroto, Y. Valcárcel, Y. Segura, R. Molina, J.A. Melero, F. Martínez, Heterogeneous photo-Fenton treatment for the reduction of pharmaceutical contamination in Madrid Rivers and ecotoxicological evaluation by a miniaturized fern spores bioassay, Chemosphere, 80 (2010) 381–388.
  31. F. Harrelkas, A. Paulo, M.M. Alves, L. El Khadir, O. Zahraa, M.N. Pons, F.P. van der Zee, Photocatalytic and combined anaerobic–photocatalytic treatment of textile dyes, Chemosphere, 27 (2008 (1816–1822.
  32. Y. Liu, J. Hu, J. Wang, Radiation-induced removal of sulphadiazine antibiotics from wastewater, Process Saf. Environ. Prot., 35 (2014) 2028–2034.
  33. N. Getoff, Comparison of radiation and photoinduced degradation of pollutants in water: synergistic effect of O2, O3 and TiO2. A Short Review, Res. Chem. Intermed., 58 (2001) 343–358.
  34. R. Andreozzi, L. Campanella, B. Fraysse, J. Garric, A. Gonnella, R.L. Giudice, R. Marotta, G. Pinto, A. Pollio, Effects of advanced oxidation processes (AOPs) on the toxicity of a mixture of pharmaceuticals, Water Sci. Technol., 50 (2004) 23–28.
  35. M.S. Lucas, J.A. Peres, G.L. Puma, Treatment of winery wastewater by ozone-based advanced oxidation processes (O3, O3/UV and O3/UV/H2O2) in a pilot-scale bubble column reactor and process economics, Sep. Purif. Technol., 72 (2010) 235–241.
  36. E.J. Rosenfeldt, K.G. Linden, S. Canonica, U. von Gunten, Comparison of the efficiency of •OH radical formation during ozonation and the advanced oxidation processes O3/H2O2 and UV/H2O2, Water Res., 40 (2006) 3695–3704.
  37. J. Nawrocki, B. Kasprzyk-Hordern, The efficiency and mechanisms of catalytic ozonation, Appl. Catal., B, 99 (2010) 27–42.
  38. J. Khodaveisi, H. Banejad, A. Afkhami, E. Olyaie, S. Lashgari, R. Dashti, Synthesis of calcium peroxide nanoparticles as an innovative reagent for in situ chemical oxidation, J. Hazard. Mater., 192 (2011) 1437–4023.
  39. A. Northup, D. Cassidy, Calcium peroxide (CaO2) for use in modified Fenton chemistry, J. Hazard. Mater., 152 (2008) 1164–1170.
  40. D.P. Cassidy, R.L. Irvine, Use of calcium peroxide to provide oxygen for contaminant biodegradation in a saturated soil, J. Hazard. Mater., 69 (1999) 25–39.
  41. M. Roma, M. Weller, S. Wentzell, Removal of Ciprofloxacin from Water using Adsorption, UV Photolysis and UV/H2O2 Degradation, Worcester, MA, 2011.
  42. Z.B. Yue, Q. Li, C.C. Li, T.H. Chen, J. Wang, Component analysis and heavy metal adsorption ability of extracellular polymeric substances (EPS) from sulfate reducing bacteria, Bioresour. Technol., 4 (2015) 399–402.
  43. S.K. Mondal, A.K. Saha, A. Sinha, Removal of ciprofloxacin using modified advanced oxidation processes: kinetics, pathways and process optimization, J. Cleaner Prod., 171 (2018) 1203–1214.
  44. Z. Honarmandrad, A. Asadipour, M. Malakootian, Investigating the use of ozonation process with calcium peroxide for the removal of metronidazole antibiotic from aqueous solutions, Desal. Wat. Treat., 77 (2017) 315–320.
  45. M. Malakootian, Z. Honarmandrad, Investigating the use of ozonation process with calcium peroxide for the removal of reactive blue 19 dye from textile wastewater, Desal. Wat. Treat., 118 (2018) 336–341.
  46. A.K. Sarmah, M.T. Meyer, A.B.A. Boxall, A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment, Chemosphere, 65 (2006) 725–759.
  47. S.R. Pouran, A.A.A. Raman, W.M.A.W. Daud, Review on the application of modified iron oxides as heterogeneous catalysts in Fenton reactions, J. Cleaner Prod., 64 (2014) 24–35.
  48. A.-C. Ndjou’ou, D. Cassidy, Surfactant production accompanying the modified Fenton oxidation of hydrocarbons in soil, Chemosphere, 65 (2006) 1610–1615.
  49. Y.J. Qian, X.F. Zhou, Y.L. Zhang, W.X. Zhang, J.B. Chen, Performance and properties of nanoscale calcium peroxide for toluene removal, Chemosphere, 91 (2013) 717–723.
  50. M.H. Khan, H.W. Bae, J.-Y. Jung, Tetracyclin degradation by ozonation in the aqueous phase: proposed degradation intermediates and phathway, J. Hazard. Mater., 181 (2010) 659–665.
  51. M. Sayed, M. Ismail, S. Khan, S. Tabassum, H.M. Khan, Degradation of ciprofloxacin in water by advanced oxidation process: kinetics study, influencing parameters and degradation pathways, Environ. Technol., 37 (2016) 590–602.
  52. S. Wijannarong, S. Aroonsrimorakot, P. Thavipoke, C. Kumsopa, S. Sangjan, Removal of reactive dyes from textile dyeing industrial effluent by ozonation process, APCBEE Procedia, 5 (2013) 279–282.
  53. A.R. Rahmani, D. Nematollahi, M.R. Samarghandi, M.T. Samadi, G. Azarian, A combined advanced oxidation process: electrooxidation-ozonation for antibiotic ciprofloxacin removal from aqueous solution, J. Electroanal. Chem., 808 (2018) 82–89.
  54. E. Olyaie, H. Banejad, A. Afkhami, A. Rahmani, J. Khodaveisi, Development of a cost-effective technique to remove the arsenic contamination from aqueous solutions by calcium peroxide nanoparticles, Sep. Purif. Technol., 95 (2012) 5–10.
  55. X. Zhang, X.G. Gu, S.G. Lu, Z.W. Miao, M.H. Xu, X.R. Fu, Z.F. Qiu, Q. Sui, Degradation of trichloroethylene in aqueous solution by calcium peroxide activated with ferrous ion, J. Hazard. Mater., 60 (2015) 253–284.
  56. F. Bahrami Asl, M. Kermani, M. Farzadkia, A. Esrafili, S.S. Arian, A. Mokammel, D. Zeynalzadeh, Removal of metronidazole from aqueous solution using ozonation process, J. Mazandaran Univ. Med. Sci., 25 (2014) 131–140.
  57. C.A. Orge, M.F.R. Pereira, J.L. Faria, Photocatalytic-assisted ozone degradation of metolachlor aqueous solution, Chem. Eng. J., 318 (2016) 1–7.
  58. F.S. Souza, L.A. Féris, Degradation of caffeine by advanced oxidative processes: O3 and O3/UV, Ozone Sci. Eng., 37 (2015) 379–384.
  59. M. Malakootian, M. Nori Sepehr, S. Bahraini, M. Zarrabi, Capacity of natural and modified zeolite with cationic surfactant in removal of antibiotic tetracycline from aqueous solutions, J. Semnan Univ. Med. Sci., 17 (2015) 1–8.
  60. Y.J. Jung, W.G. Kim, Y.J. Yoon, J.-W. Kang, Y.M. Hong, H.W. Kim, Removal of amoxicillin by UV and UV/H2O2 processes, Sci. Total Environ., 420 (2012) 160–167.
  61. M. Kermani, F. Bahrami Asl, M. Farzadkia, A. Esrafili, S.S. Arian, H. Arfaeinia, A. Dehgani, Degradation efficiency and kinetic study of metronidazole by catalytic ozonation process in presence of MgO nanoparticles, J. Urmia Univ. Med. Sci., 24 (2013) 839–850.
  62. R. Rosal, A. Rodríguez, J.A. Perdigón-Melón, M. Mezcua, M.D. Hernando, P. Letón, E. García-Calvo, A. Agüera, A.R. Fernández-Alba, Removal of pharmaceutical and kinetics of mineralization by O3/H2O2 in a biotreated municipal wastewater, Water Res., 42 (2008) 3719–3728.
  63. M. Trapido, A. Hirvonen, Y. Veressinina, J. Hentunen, R. Munter, Ozonation, ozone/UV and UV/H2O2 degradation of chlorophenols, Ozone Sci. Eng., 19 (2008) 75–96.
  64. A.Y. Dursun, A comparative study on determination of the equilibrium, kinetic and thermodynamic parameters of biosorption of copper(II) and lead(II) ions onto pretreated Aspergillus niger, Biochem. Eng. J., 28 (2006) 187–195.