1. J.A. Ober, U.S. Strontium, Geological Survey Mineral Commodity Summaries, United States Geological Survey, 2013, pp. 156–157.
  2. M.A. Callahan, Water-Related Environmental Fate of 129 Priority Pollutants, Vol. 1, Office of Water Planning and Standards, Office of Water and Waste Management, United States Environmental Protection Agency, 1979.
  3. A.-K. Leuz, C.A. Johnson, Oxidation of Sb(III) to Sb(V) by O2 and H2O2 in aqueous solutions, Geochim. Cosmochim. Acta, 69 (2005) 1165–1172.
  4. T.A. Saleh, A. Sarı, M. Tuzen, Effective adsorption of antimony(III) from aqueous solutions by polyamide-graphene composite as a novel adsorbent, Chem. Eng. J., 307 (2017) 230–238.
  5. M. Filella, N. Belzile, Y.-W. Chen, Antimony in the environment: a review focused on natural waters: II. Relevant solution chemistry, Earth Sci. Rev., 59 (2002) 265–285.
  6. M.C. He, X.Q. Wang, F.C. Wu, Z.Y. Fu, Antimony pollution in China, Sci. Total Environ., 421 (2012) 41–50.
  7. M. Kang, M. Kawasaki, S. Tamada, T. Kamei, Y. Magara, Effect of pH on the removal of arsenic and antimony using reverse osmosis membranes, Desalination, 131 (2000) 293–298.
  8. T.A. Saleh, S.O. Adio, M. Asif, H. Dafalla, Statistical analysis of phenols adsorption on diethylenetriamine-modified activated carbon, J. Cleaner Prod., 182 (2018) 960–968.
  9. T.A. Saleh, V.K. Gupta, Nanomaterial and Polymer Membranes: Synthesis, Characterization, and Applications, ISBN-13 (2016) 978-0128047033.
  10. P. Mondal, S. Bhowmick, D. Chatterjee, A. Figoli, B. Van der Bruggen, Remediation of inorganic arsenic in groundwater for safe water supply: a critical assessment of technological solutions, Chemosphere, 92 (2012) 157–170.
  11. A. Koparal, R. Özgür, Ü.B. Öğütveren, H. Bergmann, Antimony removal from model acid solutions by electrodeposition, Sep. Purif. Technol., 37 (2004) 107–116.
  12. H.W. Wang, F.L. Chen, S.Y. Mu, D.Y. Zhang, X.L. Pan, D.-J. Lee, J.-S. Chang, Removal of antimony (Sb(V)) from Sb mine drainage: biological sulfate reduction and sulfide oxidation–precipitation, Bioresour. Technol., 146 (2013) 799–802.
  13. A. Sarı, G. Şahinoğlu, M. Tüzen, Antimony(III) adsorption from aqueous solution using raw perlite and Mn-modified perlite: equilibrium, thermodynamic, and kinetic studies, Ind. Eng. Chem. Res., 51 (2012) 6877–6886.
  14. T.A. Saleh, A. Sarı, M. Tuzen, Chitosan-modified vermiculite for As(III) adsorption from aqueous solution: equilibrium, thermodynamic and kinetic studies, J. Mol. Liq., 219 (2016) 937–945.
  15. A.A. Alswat, M.B. Ahmad, T.A. Saleh, Zeolite modified with copper oxide and iron oxide for lead and arsenic adsorption from aqueous solutions, J. Water Supply Res. Technol. AQUA, 65 (2016) 465–479.
  16. H.A. Sani, M.B. Ahmad, T.A. Saleh, Synthesis of zinc oxide/talc nanocomposite for enhanced lead adsorption from aqueous solutions, RSC Adv., 110 (2016) 108819–108827.
  17. V.K. Gupta, I. Ali, T.A. Saleh, A. Nayak, S. Agarwal, Chemical treatment technologies for waste-water recycling — an overview, RSC Adv., 16 (2012) 6380–6388.
  18. H.A. Sani, M.B. Ahmad, M.Z. Hussein, N.A. Ibrahim, A. Musa, T.A. Saleh, Nanocomposite of ZnO with montmorillonite for removal of lead and copper ions from aqueous solutions, Process Saf. Environ. Prot., 109 (2017) 97–105.
  19. T.-c. Yu, X.-h. Wang, C. Li, Removal of antimony by FeCl3-modified granular-activated carbon in aqueous solution, J. Environ. Eng., 140 (2014) A4014001.
  20. M.A. Salam, R.M. Mohamed, Removal of antimony(III) by multi-walled carbon nanotubes from model solution and environmental samples, Chem. Eng. Res. Des., 91 (2013) 1352–1360.
  21. X.J. Guo, Z.J. Wu, M.C. He, X.G. Meng, X. Jin, N. Qiu, J. Zhang, Adsorption of antimony onto iron oxyhydroxides: adsorption behavior and surface structure, J. Hazard. Mater., 276 (2014) 339–345.
  22. C. Shan, Z.Y. Ma, M.P. Tong, Efficient removal of trace antimony(III) through adsorption by hematite modified magnetic nanoparticles, J. Hazard. Mater., 268 (2014) 229–236.
  23. F.C. Wu, F.H. Sun, S. Wu, Y.B. Yan, B.S. Xing, Removal of antimony(III) from aqueous solution by freshwater cyanobacteria Microcystis biomass, Chem. Eng. J., 183 (2012) 172–179.
  24. M.S. Park, S.M. Seo, I.S. Lee, J.H. Jung, Ultraefficient separation and sensing of mercury and methylmercury ions in drinking water by using aminonaphthalimide-functionalized Fe3O4@SiO2 core/shell magnetic nanoparticles, Chem. Commun., 46 (2010) 4478–4480.
  25. X.H. Wang, G.R. Zhu, F. Guo, Removal of uranium (VI) ion from aqueous solution by SBA-15, Ann. Nucl. Energy, 56 (2013) 151–157.
  26. S. Marcinko, A.Y. Fadeev, Hydrolytic stability of organic monolayers supported on TiO2 and ZrO2, Langmuir, 20 (2004) 2270–2273.
  27. C. Queffélec, M. Petit, P. Janvier, D.A. Knight, B. Bujoli, Surface modification using phosphonic acids and esters, Chem. Rev., 112 (2012) 3777–3807.
  28. Y.F. Zhu, W.H. Shen, X.P. Dong, J.L. Shi, Immobilization of hemoglobin on stable mesoporous multilamellar silica vesicles and their activity and stability, J. Mater. Res., 20 (2005) 2682–2690.
  29. C.B. Norris, P.R. Joseph, M.R. Mackiewicz, S.M. Reed, Minimizing formaldehyde use in the synthesis of gold-silver core-shell nanoparticles, Chem. Mater., 22 (2010) 3637–3645.
  30. Q. Liang, J. Chen, Y. Ying, J.-w. Zheng, L.Q. Jiang, Influence of NH4+ on the preparation of carbonaceous spheres by a hydrothermal process, J. Mater. Sci., 48 (2013) 3341–3346.
  31. H.H. Richmond, G.S. Myers, G.F. Wright, The reaction between formaldehyde and ammonia, J. Am. Chem. Soc., 70 (1948) 3659–3664.
  32. G.E. Van Gils, Study of the reaction of resorcinol, formaldehyde, and ammonia, J. Appl. Polym. Sci., 13 (1969) 835–849.
  33. R.P. Liu, C.-a, Wang, Synthesis of hollow mesoporous silica spheres with radially aligned mesochannels and tunable textural properties, Ceram. Int., 41 (2015) 1101–1106.
  34. R. Demir-Cakan, N. Baccile, M. Antonietti, M.-M. Titirici, Carboxylate-rich carbonaceous materials via one-step hydrothermal carbonization of glucose in the presence of acrylic acid, Chem. Mater., 21 (2009) 484–490.
  35. J.H. Ryu, Y.-W. Suh, D.J. Suh, D.J. Ahn, Hydrothermal preparation of carbon microspheres from mono-saccharides and phenolic compounds, Carbon, 48 (2010) 1990–1998.
  36. U. Kalapathy, A. Proctor, J. Shultz, A simple method for production of pure silica from rice hull ash, Bioresour. Technol., 73 (2000) 257–262.
  37. K.A. Venkatesan, V. Sukumaran, M.P. Antony, P.R.V. Rao, Extraction of uranium by amine, amide and benzamide grafted covalently on silica gel, J. Radioanal. Nucl. Chem., 260 (2004) 443–450.
  38. M.K. Sureshkumar, D. Das, M.B. Mallia, P.C. Gupta, Adsorption of uranium from aqueous solution using chitosantripolyphosphate (CTPP) beads, J. Hazard. Mater., 184 (2010) 65–72.
  39. K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquérol, T. Siemieniewska, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl. Chem., 57 (1985) 603–619.
  40. J.H. de Boer, B.C. Lippens, B.G. Linsen, J.C.P. Broekhoff, A. van den Heuvel, Th.J. Osinga, Thet-curve of multimolecular N2-adsorption, J. Colloid Interface Sci., 21 (1966) 405–414.
  41. H.-T. Fan, Y. Sun, Q. Tang, W.-L. Li, T. Sun, Selective adsorption of antimony(III) from aqueous solution by ion-imprinted organic–inorganic hybrid sorbent: kinetics, isotherms and thermodynamics, J. Taiwan Inst. Chem. Eng., 45 (2014) 2640–2648.
  42. H. Qiu, L. Lv, B.-c. Pan, Q.-j. Zhang, W.-m. Zhang, Q.-x. Zhang, Critical review in adsorption kinetic models, J. Zhejiang Univ. Sci. A, 10 (2009) 716–724.