1. M.A. Rauf, M.A. Meetani, A. Khaleel, A. Ahmed, Photocatalytic degradation of Methylene Blue using a mixed catalyst and product analysis by LC/MS, Chem. Eng. J., 157 (2010) 373–378.
  2. W.F. Jardim, Chemical waste management in teaching and research laboratories, New Chem., 21 (1998) 671–675.
  3. E.S. Nascimento, A.T. Filho, Chemical waste risk reduction and environmental impact generated by laboratory activities in research and teaching institutions, Braz. J. Pharm. Sci., 46 (2010) 187–198.
  4. D. Zhang, F. Zeng, Visible light-activated cadmium-doped ZnO nanostructured photocatalyst for the treatment of methylene blue dye, J. Mater. Sci., 47 (2012) 2155–2161.
  5. N.B. Swan, M.A.A. Zaini, Adsorption of malachite green and congo red dyes from water: recent progress and future outlook, Ecol. Chem. Eng. S, 26 (2019) 119–132.
  6. S. Wacławek, V.V.T. Padil, M. Černík, Major advances and challenges in heterogeneous catalysis for environmental applications: a review, Ecol. Chem. Eng. S, 25 (2018) 9–34.
  7. M. Muruganandham, R.P.S. Suri, S.H. Jafari, M. Sillanpää, G.J. Lee, J.J. Wu, M. Swaminathan, Recent developments in homogeneous advanced oxidation processes for water and wastewater treatment, Int. J. Photoenergy, 2014 (2014) 1–21.
  8. D. Bahnemann, Photocatalytic water treatment: solar energy applications, Sol. Energy, 77 (2004) 445–459.
  9. G.G. Bessegato, T.T. Guaraldo, J.F. Brito, M.F. Brugnera, M.V.B. Zanoni, Achievements and trends in photoelectrocatalysis: from environmental to energy applications, Electrocatalysis, 2015 (2015) 1–27.
  10. D. Friedmann, A. Hakki, H. Kim, W. Choic, D. Bahnemannd, Heterogeneous photocatalytic organic synthesis: state of the art and future perspectives, Green Chem., 18 (2016) 5391–5411.
  11. M. Muneer, B. Abbad, A.A.H. Kadhum, A.B. Mohamad, M.S. Takriff, K. Sopian, Synthesis and catalytic activity of TiO2 nanoparticles for photochemical oxidation of concentrated chlorophenols under direct solar radiation, Int. J. Electrochem. Sci., 7 (2012) 4871–4888.
  12. F. Kazemi, Z. Mohamadnia, B. Kaboudin, Z. Karimi, Photodegradation of methylene blue with a titanium dioxide/polyacrylamide photocatalyst under sunlight, J. Appl. Polym. Sci., 43386 (2016) 1–9.
  13. T. Soltani, M.H. Entezari, Photolysis and photocatalysis of methylene blue by ferrite bismuth nanoparticles under sunlight irradiation, J. Mol. Catal., A, 377 (2013) 197–203.
  14. A.G.S. Galdino, E.M. Oliveira, F.B.F. Monteiro, C.A.C. Zavaglia, In vitro assay analysis of the 50% HA-50% TiO2 composite manufactured by the polymeric sponge method, Ceramics, 60 (2014) 586–593.
  15. A. Matioli, J. Miagava, D. Gouvêa, Modification of stability of nanometric TiO2 polymorphs by SnO2 surface excess, Ceramics, 58 (2012) 53–57.
  16. C.C. Moro, M.A. Lansarin, M. Bagnara, Nitrogen doped TiO2 nanotubes: comparison of photocatalytic activities of materials obtained by different techniques, New Chem., 35 (2012) 1560–1565.
  17. S. Sohrabnezhad, Study of catalytic reduction and photodegradation of methylene blue by heterogeneous catalyst, Spectrochim. Acta, Part A, 81 (2011) 228–235.
  18. G.T. Saleiro, S.L. Cardoso, R. Toledo, J.N.F. Holanda, Evaluation of the crystalline phases of red ceramic supported titanium dioxide, Ceramics, 56 (2010) 162–167.
  19. B. Choudhury, A. Choudhury, Luminescence characteristics of cobalt doped TiO2 nanoparticles, J. Lumin., 132 (2012) 178–184.
  20. L.G. Devi, B.N. Murhty, S.G. Kumar, Photocatalytic degradation of imidachloprid under solar light using metal ion doped TiO2 nanoparticles: influence of oxidation state and electronic configuration of dopants, Catal. Lett., 130 (2009) 496–503.
  21. V.G. Gandhi, M.K. Mishra, P.A. Joshi, A study on deactivation and regeneration of titanium dioxide during photocatalytic degradation of phthalic acid, J. Ind. Eng. Chem., 18 (2012) 1902–1907.
  22. T. Venkov, K. Hadjiivanov, FTIR study of CO interaction with Cu/TiO2, Catal. Commun., 4 (2003) 209–213.
  23. A.D. Vishwanath, J.S. Shankar, N.M. Eknath, A.A. Eknath, K.N. Haribhau, Preparation, characterization and photocatalytic activities of TiO2 towards methyl red degradation, Orient. J. Chem. 33 (2017) 104–112.
  24. N. Mandzy, E. Grulke, T. Druffel, Breakage of TiO2 agglomerates in electrostatically stabilized aqueous dispersions, Powder Technol., 160 (2005) 121–126.
  25. Ö.Ç. Duvarci, M. Çiftçioğlu, Preparation and characterization of nanocrystalline titania powders by sonochemical synthesis, Powder Technol., 228 (2012) 231–240.
  26. S. Joseph, B. Mathew, Microwave assisted biosynthesis of silver nanoparticles using the Rhizome extract of Alpinia galanga and evaluation of their catalytic and antimicrobial activities, J. Nanopart., 2014 (2014) 1–9.
  27. K. Dai, H. Chen, T. Peng, D. Ke, H. Yi, Photocatalytic degradation of methyl orange in aqueous suspension of mesoporous titania nanoparticles, Chemosphere, 69 (2007) 1361–1367.
  28. I. Ayadi, F.B. Ayed, Sintering and the mechanical properties of the tricalcium phosphate–titania composites, J. Mech. Behav. Biomed. Mater., 49 (2015) 129–140.
  29. G. Li, L. Lv, H. Fan, J. Ma, Y. Li, Y. Wan, X.S. Zhao, Effect of the agglomeration of TiO2 nanoparticles on their photocatalytic performance in the aqueous phase, J. Colloid Interface Sci., 348 (2010) 342–347.
  30. F. Liu, R. Jamal, Y. Wang, M. Wang, L. Yang, T. Abdiryim, Photodegradation of methylene blue by photocatalyst of D-A-D type polymer/functionalized multi-walled carbon nanotubes composite under visible-light irradiation, Chemosphere, 168 (2017) 1669–1676.
  31. Y. Chihiro, K. Kazuo, W. Noriyuki, T. Hiroshi, T. Tomoo, M. Tadashi, T. Hitoshi, Photocatalytic degradation of methylene blue by TiO2 film and Au particles-TiO2 composite film, Thin Solid Films, 516 (2008) 5881–5884.
  32. T.M.L. Maya, M.J.L. Guzmán, R.L. Hinojosa, R.A. Hernández, Synthesis and photocatalytic activity of ZnO-CuPc for methylene blue and potassium cyanide degradation, Mater. Sci. Semicond. Process, 77 (2018) 74–82.
  33. R.S. Dariani, A. Esmaeili, A. Mortezaali, S. Dehghanpour, Photocatalytic reaction and degradation of methylene blue on TiO2 nano-sized particles, Optik, 127 (2016) 7143–7154.
  34. M.A. Habib, I.M.I. Ismail, A.J. Mahmood, M.R. Ullah, Photocatalytic decolorization of Brilliant Golden Yellow in TiO2 and ZnO suspensions, J. Saudi Chem. Soc., 16 (2012) 423–429.
  35. A.H. Jawad, N.S.A. Mubarak, M.A.M. Ishak, K. Ismail, W.I. Nawawi, Kinetics of photocatalytic decolourization of cationic dye using porous TiO2 film, J. Taibah Univ. Sci., 10 (2016) 352–362.
  36. M.R. Khan, A.S.W. Kurny, G. Fahmida, Parameters affecting the photocatalytic degradation of dyes using TiO2: a review, Appl. Water Sci., 7 (2017) 1569–1578.
  37. K. Soutsas, V. Karayannis, I. Poulios, A. Riga, K. Ntampegliotis, X. Spiliotis, G. Papapolymerou, Decolorization and degradation of reactive azo dyes via heterogeneous photocatalytic processes, Desalination, 250 (2010) 345–350.
  38. S. Papoutsakis, S.M. Cuevas, N. Gondrexon, S. Baup, S. Malato, C. Pulgarin, Coupling between high-frequency ultrasound and solar photo-Fenton at pilot scale for the treatment of organic contaminants: an initial approach, Ultrason. Sonochem., 22 (2012) 527–534.
  39. P. Anca, M.C. Anca, C. Nicula, L.M. Cozmuta, A. Jastrzębska, A. Olszyna, L. Baia, UV light-assisted degradation of methyl orange, methylene blue, phenol, salicylic acid, and Rhodamine B: photolysis versus photocatalyis, Water Air Soil Pollut., 228 (2017) 28–41.
  40. M. Sanchez, M.J. Rivero, I. Ortiz, Kinetics of dodecylbenzenesulphonate mineralisation by TiO2 photocatalysis, Appl. Catal., B, 101 (2011) 515–521.
  41. J.P.S. Valente, P.M. Padilha, A.O. Florentino, Studies on the adsorption and kinetics of photodegradation of a model compound for heterogeneous photocatalysis onto TiO2, Chemosphere, 64 (2006) 1128–1133.
  42. D. Ljubas, G. Smoljani, H. Jureti, Degradation of Methyl Orange and Congo Red dyes by using TiO2 nanoparticles activated by the solar and the solar-like radiation, J. Environ. Manage., 161 (2015) 83–91.
  43. W.S. Lopes, M.G.C. Azevedo, V.D. Leite, J.T. Sousa, J.S. Buriti, Degradation of 17α-ethinylestradiol in water by heterogeneous photocatalysis, Environ. Water - Inter. J. Appl. Sci., 10 (2015) 728–736.
  44. E. Kudlek, D. Silvestri, S. Wacławek, V.V.T. Padil, M. Stuchlík, L. Voleský, P. Kejzlar, M. Černík, TiO2 immobilised on biopolymer nanofibers for the removal of bisphenol A and diclofenac from water, Ecol. Chem. Eng. S, 24 (2017) 417–429.