References

  1. C. Klaysom, R. Marschall, L.Z. Wang, B.P. Ladewig, G.Q.M. Lu, Synthesis of composite ion-exchange membranes and their electrochemical properties for desalination applications, J. Mater. Chem., 20 (2010) 4669–4674.
  2. C. Klaysom, R. Marschall, S.-H. Moon, B.P. Ladewig, G.Q.M. Lu, L.Z. Wang, Preparation of porous composite ion-exchange membranes for desalination application, J. Mater. Chem., 21 (2011) 7401–7409.
  3. N. Tanaka, M. Nagase, M. Higa, Preparation of aliphatichydrocarbon-based anion-exchange membranes and their antiorganic-fouling properties, J. Membr. Sci., 384 (2011) 27–36.
  4. S. Mulyati, R. Takagi, A. Fujii, Y. Ohmukai, T. Maruyama, H. Matsuyama, Improvement of the antifouling potential of an anion exchange membrane by surface modification with a polyelectrolyte for an electrodialysis process, J. Membr. Sci., 417 (2012) 137–143.
  5. K.M. Majewska-Nowak, Treatment of organic dye solutions by electrodialysis, Adv. Civ. Environ. Mater. Res., 4 (2013) 203–214.
  6. S. Caprarescu, M.C. Corobea, V. Purcar, C.I. Spataru, R. Ianchis, G. Vasilievici, Z. Vuluga, San copolymer membranes with ion exchangers for Cu(II) removal from synthetic wastewater by electrodialysis, J. Environ. Sci.-China, 35 (2015) 27–37.
  7. D.J. Wan, S.H. Xiao, X.Y. Cui, Q.H. Zhang, Y.H. Song, Removal of Cu2+ from aqueous solution using proton exchange membrane by Donnan dialysis process, Environ. Earth Sci., 73 (2015) 4923–4929.
  8. H. Strathmann, Electrodialysis, a mature technology with a multitude of new applications, Desalination, 264 (2010) 268–288.
  9. K. Venugopal, S. Dharmalingam, Evaluation of synthetic salt water desalination by using a functionalized polysulfone based bipolar membrane electrodialysis cell, Desalination, 344 (2014) 189–197.
  10. F.B. Luo, Y.M. Wang, C.X. Jiang, B. Wu, H.Y. Feng, T.W. Xu, A power free electrodialysis (PFED) for desalination, Desalination, 404 (2017) 138–146.
  11. N.C. Wright, S.R. Shah, S.E. Amrose, A.G. Winter V., A robust model of brackish water electrodialysis desalination with experimental comparison at different size scales, Desalination, 443 (2018) 27–43.
  12. F. Goncalves, C. Fernandes, P.C. dos Santos, M.N. de Pinho, Wine tartaric stabilization by electrodialysis and its assessment by the saturation temperature, J. Food Eng., 59 (2003) 229–235.
  13. E. Vera, J. Ruales, M. Dornier, J. Sandeaux, R. Sandeaux, G. Pourcelly, Deacidification of clarified passion fruit juice using different configurations of electrodialysis, J. Chem. Technol. Biotechnol., 78 (2003) 918–925.
  14. G.Q. Chen, F.I.I. Eschbach, M. Weeks, S.L. Gras, S.E. Kentish, Removal of lactic acid from acid whey using electrodialysis, Sep. Purif. Technol., 158 (2016) 230–237.
  15. F.L. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: a review, J. Environ. Manage., 92 (2011) 407–418.
  16. F.D. Belkada, O. Kitous, N. Drouiche, S. Aoudj, O. Bouchelaghem, N. Abdi, H. Grib, N. Mameri, Electrodialysis for fluoride and nitrate removal from synthesized photovoltaic industry wastewater, Sep. Purif. Technol., 204 (2018) 108–115.
  17. X.-R. Pan, W.-W. Li, L. Huang, H.-Q. Liu, Y.-K. Wang, Y.-K. Geng, P.K.-S. Lam, H.-Q. Yu, Recovery of high-concentration volatile fatty acids from wastewater using an acidogenesis-electrodialysis integrated system, Bioresour. Technol., 260 (2018) 61–67.
  18. H. Selvaraj, P. Aravind, M. Sundaram, Four compartment mono selective electrodialysis for separation of sodium formate from industry wastewater, Chem. Eng. J., 333 (2018) 162–169.
  19. M.I. Khan, C.L. Zheng, A.N. Mondal, Md.M. Hossain, B. Wu, K. Emmanuel, L. Wu, T.W. Xu, Preparation of anion exchange membranes from BPPO and dimethylethanolamine for electrodialysis, Desalination, 402 (2017) 10–18.
  20. F.G. Donnan, The theory of membrane equilibria, Chem. Rev., 1 (1924) 73–90.
  21. Y. Tanaka, A computer simulation of continuous ion exchange membrane electrodialysis for desalination of saline water, Desalination, 249 (2009) 809–821.
  22. B.M. Asquith, J. Meier-Haack, C. Vogel, W. Butwilowski, B.P. Ladewig, Side-chain sulfonated copolymer cation exchange membranes for electro-driven desalination applications, Desalination, 324 (2013) 93–98.
  23. M. Zhang, H.K. Kim, E. Chalkova, F. Mark, S.N. Lvov, T.C.M. Chung, New polyethylene based anion exchange membranes (PE-AEMs) with high ionic conductivity, Macromolecules, 44 (2011) 5937–5946.
  24. N.J. Robertson, H.A. Kostalik, T.J. Clark, P.F. Mutolo, H.D. Abruna, G.W. Coates, Tunable high performance crosslinked alkaline anion exchange membranes for fuel cell applications, J. Am. Chem. Soc., 132 (2010) 3400–3404.
  25. C.R. Yang, S.L. Wang, W.J. Ma, L.H. Jiang, G.Q. Sun, Highly alkaline stable N1-alkyl substituted 2-methylimidazolium functionalized alkaline anion exchange membranes, J. Mater. Chem. A, 3 (2015) 8559–8565.
  26. T.H. Tsai, A.M. Maes, M.A. Vandiver, C. Versek, S. Seifert, M. Tuominen, M.W. Liberatore, A.M. Herring, E.B. Coughlin, Synthesis and structure-conductivity relationship of polystyrene-block-poly(vinyl benzyl trimethylammonium) for alkaline anion exchange membrane fuel cells, J. Polym. Sci. Polym. Phys., 51 (2013) 1751–1760.
  27. Y.M. Zhang, J. Fang, Y.B. Wu, H.K. Xu, X.J. Chi, W. Li, Y.X. Yang, G. Yan, Y.Z. Zhuang, Novel fluoropolymer anion exchange membranes for alkaline direct methanol fuel cells, J. Colloid Interface Sci., 381 (2012) 59–66.
  28. C. Fujimoto, D.S. Kim, M. Hibbs, D. Wrobleski, Y.S. Kim, Backbone stability of quaternized polyaromatics for alkaline membrane fuel cells, J. Membr. Sci., 423 (2012) 438–449.
  29. X.H. Li, G.H. Nie, J.X. Tao, W.J. Wu, L.C. Wang, S.J. Liao, Assessing the influence of side-chain and main-chain aromatic benzyltrimethyl ammonium on anion exchange membranes, ACS Appl. Mater. Interfaces, 6 (2014) 7585–7595.
  30. G.L. Han, P.Y. Xu, K. Zhou, Q.G. Zhang, A.M. Zhu, Q.L. Liu, Fluorene-containing poly (arylene ether sulfone) block copolymers: synthesis, characterization and application, J. Membr. Sci., 464 (2014) 72–79.
  31. X.H. Li, Y.F. Yu, Q.F. Liu, Y.Z. Meng, Synthesis and properties of anion conductive multiblock copolymers containing tetraphenyl methane moieties for fuel cell application, J. Membr. Sci., 436 (2013) 202–212.
  32. N.W. Li, Y.J. Leng, M.A. Hickner, C.Y. Wang, Highly stable, anion conductive, comb-shaped copolymers for alkaline fuel cells, J. Am. Chem. Soc., 135 (2013) 10124–10133.
  33. H.S. Dang, E.A. Weiber, P. Jannasch, Poly(phenylene oxide) functionalized with quaternary ammonium groups via flexible alkyl spacers for high-performance anion exchange membranes, J. Mater. Chem. A, 3 (2015) 5280–5284.
  34. Z. Liu, X.B. Li, K.Z. Shen, P.J. Feng, Y.N. Zhang, X. Xu, W. Hu, Z.H. Jiang, B.J. Liu, M.D. Guiver, Naphthalene-based poly(arylene ether ketone) anion exchange membranes, J. Mater. Chem. A, 1 (2013) 6481–6488.
  35. A. Jasti, S. Prakash, V.K. Shahi, Stable and hydroxide ion conductive membranes for fuel cell applications: chloromethyaltion and amination of poly(ether ether ketone), J. Membr. Sci., 428 (2013) 470–479.
  36. Z.J. Xia, S. Yuan, G.P. Jiang, X.X. Guo, J.H. Fang, L.L. Liu, J.L. Qiao, J. Yin, Polybenzimidazoles with pendant quaternary ammonium groups as potential anion exchange membranes for fuel cells, J. Membr. Sci., 390 (2012) 152–159.
  37. T. Sata, K. Kawamura, K. Matsusaki, Electrodialytic transport properties of anion-exchange membranes prepared from poly(vinyl alcohol), poly(N-ethyl 4-vinylpyridinium salt) and beta-cyclodextrin, J. Membr. Sci, 181 (2001) 167–178.
  38. O.I. Deavin, S. Murphy, A.L. Ong, S.D. Poynton, R. Zeng, H. Herman, J.R. Varcoe, Anion-exchange membranes for alkaline polymer electrolyte fuel cells: comparison of pendent benzyltrimethylammonium- and benzylmethylimidazoliumhead- groups, Energy Environ. Sci., 5 (2012) 8584–8597.
  39. X.C. Lin, L. Wu, Y.B. Liu, A.L. Ong, S.D. Poynton, J.R. Varcoe, T.W. Xu, Alkali resistant and conductive guanidinium-based anion-exchange membranes for alkaline polymer electrolyte fuel cells, J. Power Sources, 217 (2012) 373–380.
  40. J. Ran, L. Wu, J.R. Varcoe, A.L. Ong, S.D. Poynton, T.W. Xu, Development of imidazolium-type alkaline anion exchange membranes for fuel cell application, J. Membr. Sci., 415 (2012) 242–249.
  41. Y.P. Zha, M.L. Disabb-Miller, Z.D. Johnson, M.A. Hickner, G.N. Tew, Metal-cation-based anion exchange membranes, J. Am. Chem. Soc., 134 (2012) 4493–4496.
  42. K.J.T. Noonan, K.M. Hugar, H.A. Kostalik, E.B. Lobkovsky, H.D. Abruna, G.W. Coates, Phosphonium-functionalized polyethylene: a new class of base-stable alkaline anion exchange membranes, J. Am. Chem. Soc., 134 (2012) 18161–18164.
  43. A. Campione, L. Gurreri, M. Ciofalo, G. Micale, A. Tamburini, A. Cipollina, Electrodialysis for water desalination: a critical assessment of recent developments on process fundamentals, models and applications, Desalination, 434 (2018) 121–160.
  44. X. Chen, Y.L. Jiang, S.S. Yang, J.F. Pan, R.J. Yan, B. Van der Bruggen, A. Sotto, C.J. Gao, J.N. Shen, Internal cross-linked anion exchange membranes with improved dimensional stability for electrodialysis, J. Membr. Sci., 542 (2017) 280–288.
  45. M. Manohar, A.K. Das, V.K. Shahi, Alternative preparative route for efficient and stable anion-exchange membrane for water desalination by electrodialysis, Desalination, 413 (2017) 101–108.
  46. T. Chakrabarty, S. Prakash, V.K. Shahi, End group cross-linked 2-(dimethylamino) ethylmethacrylate based anion exchange membrane for electrodialysis, J. Membr. Sci., 428 (2013) 86–94.
  47. B.G. Shah, V.K. Shahi, S.K. Thampy, R. Rangarajan, P.K. Ghosh, Comparative studies on performance of interpolymer and heterogeneous ion-exchange membranes for water desalination by electrodialysis, Desalination, 172 (2005) 257–265.
  48. S.X. Zhong, W.J. Wu, B.W. Wei, J. Feng, S.J. Liao, X.H. Li, Y.G. Yu, Influence of the ions distribution of anion-exchange membranes on electrodialysis, Desalination, 437 (2018) 34–44.
  49. L. Chen, D. Wang, Z. Zhang, Study on the synthesis of 2,2’,6,6’-tetramethylbiphenol, Chem. Eng. Equip., 5 (2010) 15–17.
  50. X.H. Li, L.C. Wang, S.S. Cheng, Investigation on structure and properties of anion exchange membranes based on tetramethylbiphenol moieties containing copoly(arylene ether)s, J. Appl. Polym. Sci., 132 (2015), https://doi.org/10.1002/ app.41525.
  51. X.H. Li, J.X. Tao, G.H. Nie, L.C. Wang, L.H. Li, S.J. Liao, Crosslinked multiblock copoly(arylene ether sulfone) ionomer/nano-ZrO2 composite anion exchange membranes for alkaline fuel cells, RSC Adv., 4 (2014) 41398–41410.
  52. X. Yue, W.J. Wu, G.D. Chen, C.R. Yang, S.J. Liao, X.H. Li, Influence of 2,2’,6,6’-tetramethyl biphenol-based anionexchange membranes on the diffusion dialysis of hydrochloride acid, J. Appl. Polym. Sci., 134 (2017), https://doi.org/10.1002/ app.45333.
  53. M.I. Khan, A.N. Mondal, B. Tong, C.X. Jiang, K. Emmanuel, Z.J. Yang, L. Wu, T.W. Xu, Development of BPPO-based anion exchange membranes for electrodialysis desalination applications, Desalination, 391 (2016) 61–68.
  54. P.P. Sharma, V. Yadav, A. Rajput, V. Kulshrestha, PVDF-gpoly (styrene-co-vinylbenzyl chloride) based anion exchange membrane: High salt removal efficiency and stability, Desalination, 444 (2018) 35–43.
  55. B.C. Lin, L.H. Qiu, B. Qiu, Y. Peng, F. Yan, A soluble and conductive polyfluorene ionomer with pendant imidazolium groups for alkaline fuel cell applications, Macromolecules, 44 (2011) 9642–9649.
  56. M.I. Khan, R. Luque, S. Akhtar, A. Shaheen, A. Mehmood, S. Idress, S.A. Buzdar, A. Ur Rehman, Design of anion exchange membranes and electrodialysis studies for water desalination, Materials, 9 (2016) pii: E365, doi: 10.3390/ma9050365.