1. T. Abbas, A.D. Majeed, Applicability of MBR Technology for Decentralized Municipal Wastewater Treatment in Iraq, Ministry of Science and Technology, Iraq, 2016, pp. 28–30.
  2. J. C. Leyva-Díaz, K. Calderón, F.A. Rodríguez, J. González-López, E. Hontoria, J.M. Poyatos, Comparative kinetic study between moving bed biofilm reactor-membrane bioreactor and membrane bioreactor systems and their influence on organic matter and nutrients removal, Biochem. Eng. J., 77 (2013) 28–40.
  3. M. A. Karim, J.L. Mark, A preliminary comparative analysis of MBR and CAS wastewater treatment systems, Int. Water Wastewater Treat., 3 (2017), doi 2381-5299.138.
  4. J.C. Leyva-Díaz, J. Martín-Pascual, J. González-López, E. Hontoria, J. M. Poyatos, Effects of scale-up on a hybrid moving bed biofilm reactor–membrane bioreactor for treating urban wastewater, Chem. Eng. Sci., 104 (2013) 808–816.
  5. J.C. Diaz, M.M. Munio, Lopez, J. Gonzalez, M.J. Poyatos, Anaerobic/anoxic/oxic configuration in hybrid moving bed biofilm reactor-membrane bioreactor for nutrient removal from municipal wastewater, Ecol. Eng., 91 (2016) 449–458.
  6. R. Shokoohi, G. Asgari, M. Foroughi, S.M. Hemmat, Modelling of moving bed biofilm reactor (MBBR) efficiency on hospital wastewater (HW) treatment: a comprehensive analysis on BOD and COD removal, Int. J. Environ. Sci. Technol., 14 (2017) 841–852.
  7. L. Deng, W. Guo, H.H. Ngo, X. Zhang, X.C. Wang, Q. Zhang, R. Chen, New functional biocarriers for enhancing the performance of a hybrid moving bed biofilm reactor membrane bioreactor system, Bioresour. Technol., 208 (2016) 87–93.
  8. J.C. Leyva-Díaz, J. Martín-Pascual, M.M. Muñío, J. González-López, E. Hontoria, J.M. Poyatos, Comparative kinetics of hybrid and pure moving bed reactor-membrane bioreactors, Ecol. Eng., 70 (2014) 227–234.
  9. J.C. Leyva-Díaz, A. González-Martínez, J. González-López, M.M. Muñío, J.M. Poyatos, Kinetic modeling and microbiological study of two-step nitrification in a membrane bioreactor and hybrid moving bed biofilm reactor membrane bioreactor for wastewater treatment, Chem. Eng. J., 259 (2015) 692–702.
  10. Y. Rahimi, A. Torabian, N. Mehrdadi, M. Habibi-Rezaie, H. Pezeshk, G.R. Nabi-Bidhendi, Optimizing aeration rates for minimizing membrane fouling and its effect on sludge characteristics in a moving bed membrane bioreactor, J. Hazard. Mater., 186 (2011) 1097–1102.
  11. N. A. Weerasekara, K.H. Choo, C.H. Lee, Hybridization of physical cleaning and quorum quenching to minimize membrane biofouling and energy consumption in a membrane bioreactor, Water Res., 67 (2014) 1–10.
  12. Standard Methods for the Examination of Water and Wastewater, 22nd ed., American Public Health Association/American Water Works Association/Water Environment Federation, Washington DC, USA, 2012.
  13. D. R. Anderson, D.J. Sweeney, T.A. Williams, Statistics for business and economics, 6th ed., West Publication, 28 (1996) 452–453.
  14. L. Statistics, Kruskal-Wallis H Test using SPSS, Acedido em agosto, 13 (2013) 2013.
  15. F. Meng, F. Yang, B. Shi, H. Zhang, A comprehensive study on membrane fouling in submerged membrane bioreactors operated under different aeration intensities, Sep. Purif. Technol., 59 (2008) 91–100.