1. I. Azni, S. Katayon, Degradation of phenol in wastewater using anolyte produced from electrochemical generation of brine solution, Global NEST Int. J., 4 (2002) 139–144.
  2. W. Hu, Y. Gao, Treatment of phenolic wastewater by incineration, Ind. Water Waste, 31 (2000) 28–29.
  3. P. Barták, P. Frnková, L. Čáp, Determination of phenols using simultaneous steam distillation–extraction, J. Chromatogr., A, 867 (2000) 281–287.
  4. M.T.A. Reis, O.M.F. Freitas, S. Agarwal, L.M. Ferreira, M.R.C. Ismael, R. Machado, J.M.R. Carvalho, Removal of phenols from aqueous solutions by emulsion liquid membranes, J. Hazard. Mater., 192 (2011) 986–994.
  5. C. Zidi, R. Tayeb, M. Dhahbi, Extraction of phenol from aqueous solutions by means of supported liquid membrane (MLS) containing tri–noctyl phosphine oxide (TOPO), J. Hazard. Mater., 194 (2011) 62–68.
  6. R.R.N. Marques, F. Stüber, K.M. Smith, A. Fabregat, C. Bengoa, J. Font, A. Fortuny, S. Pullket, G.D. Fowler, N.J.D. Graham, Sewage sludge based catalysts for catalytic wet air oxidation of phenol: preparation, characterisation and catalytic performance, Appl. Catal., B, 101 (2011) 306–316.
  7. S. Lefèvre, O. Boutin, J.–H. Ferrasse, L. Malleret, R. Faucherand, A. Viand, Thermodynamic and kinetic study of phenol degradation by a non–catalytic wet air oxidation process, Chemosphere, 84 (2011) 1208–1215.
  8. X. Zhu, J.R. Ni, J. Wei, X. Xing, H. Li, Y. Jiang, Scale–up of BDD anode system for electrochemical oxidation of phenol simulated wastewater in continuous mode, J. Hazard. Mater., 184 (2010) 493–498.
  9. P. Jiang, J. Zhou, A. Zhang, Y. Zhong, Electrochemical degradation of p–nitrophenol with different processes, J. Environ. Sci., 22 (2010) 500–506.
  10. S. Raghu, C.A. Basha, Chemical or electrochemical techniques, followed by ion exchange, for recycle of textile dye wastewater, J. Hazard. Mater., 149 (2007) 324–330.
  11. N.D. Berge, K.S. Ro, J. Mao, J.R.V. Flora, M.A. Chappell, S. Bae, Hydrothermal carbonization of municipal waste streams, Environ. Sci. Technol., 45 (2011) 5696–5703.
  12. M.M. Titirici, A. Thomas, S. Yu, J.O. Muller, M. Antonietti, A direct synthesis of mesoporous carbons with bicontinuous pore morphology from crude plant material by hydrothermal carbonization, Chem. Mater., 19 (2007) 4205–4212.
  13. Z. Wu, C. Li, H. Liang, J. Chen, S. Yu, Ultralight, flexible, and fire–resistant carbon nanofiber aerogels from bacterial cellulose, Angew. Chem., Int. Ed., 52 (2013) 2925–2929.
  14. B. Hu, S. Yu, K. Wang, L. Liu, X Xu, Functional carbonaceous materials from hydrothermal carbonization of biomass: an effective chemical process, Dalton Trans., 40 (2008) 5414–5423.
  15. M.M. Titirici, R.J. White, C. Falco, M. Sevilla, Black perspectives for a green future: hydrothermal carbons for environment protection and energy storage, Energy Environ. Sci., 5 (2012) 6796–6822.
  16. T.P. Fellinger, R.J. White, M.M. Titirici, M. Antonietti, Borax– mediated formation of carbon aerogels from glucose, Adv. Funct. Mater., 22 (2012) 3254–3260.
  17. C. Falco, N. Baccile, M.M. Titirici, Morphological and structural differences between glucose, cellulose and lignocellulosic biomass derived hydrothermal carbons, Green Chem., 13 (2011) 3273–3281.
  18. J. Poerschmann, B. Weiner, H. Wedwitschka, A. Zehnsdorf, R. Koehler, F.D. Kopinke, Characterization of biochars and dissolved organic matter phases obtained upon hydrothermal carbonization of Elodea nuttallii, Bioresour. Technol., 189 (2015) 145–153.
  19. J. Poerschmann, B. Weiner, I. Baskyr, Organic compounds in olive mill wastewater and in solutions resulting from hydrothermal carbonization of the wastewater, Chemosphere, 92 (2013) 1472–1482.
  20. J. Poerschmann, I. Baskyr, B. Weiner, R. Koehler, H. Wedwitschka, F.D. Kopinke, Hydrothermal carbonization of olive mill wastewater, Bioresour. Technol., 133 (2013) 581–588.
  21. J. Poerschmann, B. Weiner, H. Wedwitschka, I. Baskyr, R. Koehler, F.D. Kopinke, Characterization of biocoals and dissolved organic matter phases obtained upon hydrothermal carbonization of brewer’s spent grain, Bioresour. Technol., 164 (2014) 162–169.
  22. M.T. Reza, A. Freitas, X. Yang, C.J. Coronella, Wet air oxidation of hydrothermal carbonization (HTC) process liquid, ACS Sustain. Chem. Eng., 4 (2016) 3250−3254.
  23. B. Weiner, I. Baskyr, J. Poerschmann, F.D. Kopinke, Potential of the hydrothermal carbonization process for the degradation of organic pollutants, Chemosphere, 92 (2013) 674–680.
  24. S. Yin, Z. Tan, Hydrothermal liquefaction of cellulose to bio– oil under acidic, neutral and alkaline conditions, Appl. Energy, 92 (2012) 234–239.
  25. Z. Srokol, A.G. Bouche, A. Estrik, R.C.J. Strik, T. Maschmeyer, J.A. Peters, Hydrothermal upgrading of biomass to biofuel; studies on some monosaccharide model compounds, Carbohydr. Res., 339 (2004) 1717–1726.
  26. D. Esposito, M. Antonietti, Chemical conversion of sugars to lactic acid by alkaline hydrothermal processes, ChemSusChem, 6 (2013) 989–992.
  27. Y. Wang, W. Deng, B. Wang, Q. Zhang, X. Wan, Z. Tang, Y. Wang, C. Zhu, Z. Cao, G. Wang, H. Wan, Chemical synthesis of lactic acid from cellulose catalysed by lead (II) ions in water, Nat. Commun., 4 (2013) 2141–2147.
  28. H. Zhao, J.E. Holladay, H. Brown, Z. Zhang, Metal chlorides in ionic liquid solvents convert sugars to 5–hydroxymethylfurfural, Science, 316 (2007) 1597–1600.
  29. L. Peng, L. Lin, J. Zhang, J. Zhuang, B. Zhang, Y. Gong, Catalytic conversion of cellulose to levulinic acid by metal chlorides, Molecules, 15 (2010) 5258–5272.
  30. Z. Ding, J. Shi, J. Xiao, W. Gu, C. Zheng, H. Wang, Catalytic conversion of cellulose to 5–hydroxymethyl furfural using acidic ionic liquids and co–catalyst, Carbohydr. Polym., 90 (2012) 792– 798.
  31. S.B.A. Hamid, S.J. Teh, Y.S. Lim. Catalytic hydrothermal upgrading of α–cellulose using iron salts as a Lewis acid, Bioresources, 10 (2015) 5974–5986.
  32. J. Hao, W. Zhang, G. Xue, P. Rao, R. Wang, Treatment of distillation residue waste liquid from NPEOs by hydrothermal carbonization process for resource recovery, Desal. Wat. Treat., 125 (2018) 26–31.
  33. State Environmental Protection Administration of China, Water and Wastewater Monitoring and Analysis Methods, 4th ed., China Environmental Science Press, Beijing, 2002, pp. 210–213.
  34. S. Sivrikaya, S. Albayrak, M. Imamoglu, A. Gundogdu, C. Duran, H. Yildiz, Dehydrated hazelnut husk carbon: a novel sorbent for removal of Ni (II) ions from aqueous solution, Desal. Wat. Treat., 50 (2012) 2–13.
  35. M. Kruk, M. Jaroniec, Gas adsorption characterization of ordered organic–inorganic nanocomposite materials, Chem. Mater., 13 (2001) 3169–3183.
  36. L. Gu, B. Li, H. Wen, X. Zhang, L. Wang, J. Ye, Co-hydrothermal treatment of fallen leaves with iron sludge to prepare magnetic iron product and solid fuel, Bioresour. Technol., 257 (2018) 229–237.
  37. S. Kang, X. Li, J. Fan, J. Chang, Characterization of hydrochars produced by hydrothermal carbonization of lignin, cellulose, D–xylose, and wood meal, Ind. Eng. Chem. Res., 51 (2012) 9023–9031.
  38. H. Deng, L. Yang, G. Tao, J. Dai, Preparation and characterization of activated carbon from cotton stalk by microwave assisted chemical activation–application in methylene blue adsorption from aqueous solution, J. Hazard. Mater., 166 (2009) 1514–1521.
  39. V. Boonamnuayvitaya, S. Ung–Sae, W. Tanthapanichakoon, Preparation of activated carbons from coffee residue for the adsorption of formaldehyde, Sep. Purif. Technol., 42 (2005) 159–168.
  40. W. Shen, Z. Li, Y. Liu, Surface chemical functional groups modification of porous carbon, Recent Pat. Chem. Eng., 1 (2008) 27–40.
  41. J. Mosa, A. Durán, M. Aparicio, Sulfonic acid–functionalized 294 hybrid organic–inorganic proton exchange membranes synthesized by sol–gel using 3–mercaptopropyl trimethoxysilane (MPTMS), J. Power Sources, 297 (2015) 208–216.
  42. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc., 40 (1918) 1361–1403.
  43. H.M.F. Freundlich, Uber die adsorption in losungen, Z. Phys. Chem., 57 (1906) 385–470.
  44. O. Kazaka, Y.R. Ekerb, I. Akinc, H. Bingold, A. Tora, A novel red mud@sucrose based carbon composite: preparation, characterization and its adsorption performance toward methylene blue in aqueous solution, J. Environ. Chem. Eng., 5 (2017) 2639–2647.
  45. S. Lagergren, About the theory of so–called adsorption of soluble substances, K. Sven. Vetensk. Handl., 24 (1898) 1–39.
  46. Y. Ho, G. McKay, Pseudo–second order model for sorption processes, Process Biochem., 34 (1999) 451–465.