References

  1. M.J. Ndolomingo, R. Meijboom, Kinetic analysis of catalytic oxidation of methylene blue over γ-Al2O3 supported copper nanoparticles, Appl. Catal., A, 506 (2015) 33–43.
  2. M.A. Rauf, M.A. Meetani, A. Khaleel, A. Ahmed, Photocatalytic degradation of Methylene Blue using a mixed catalyst and product analysis by LC/MS, Chem. Eng. J., 157 (2010) 373–378.
  3. A. Buthiyappan, A.R. Abdul Aziz, W.M.A. Wan Daud, Recent advances and prospects of catalytic advanced oxidation process in treating textile effluents, Rev. Chem. Eng., 32 (2015) 1–47.
  4. G. Vijayaraghavan, S. Shanthakumar, Effective removal of acid black 1 dye in textile effluent using alginate from brown algae as a coagulant, Iran. J. Chem. Chem. Eng., 37 (2018) 145–151.
  5. H. Abdolmohammad-Zadeh, E. Ghorbani, Z. Talleb, Zinc– aluminum layered double hydroxide as a nano-sorbent for removal of Reactive Yellow 84 dye from textile wastewater effluents, J. Iran. Chem. Soc., 10 (2013) 1103–1112.
  6. D. Ferhat, D. Nibou, M. Elhadj, S. Amokrane, Adsorption of Ni2+ ions onto NaX and NaY zeolites: equilibrium, kinetic, intra crystalline diffusion and thermodynamic studies, Iran. J. Chem. Chem. Eng., 38 (2019) 1021–9986.
  7. J. Behin, E. Ghadamnan, H. Kazemian, Recent advances in the science and technology of natural zeolites in Iran, Clay Miner., 54 (2019) 131–144.
  8. T. Hajira, A. Saud, M. Saad, Synthesis of kaolin loaded Ag and Ni nanocomposites and their applicability for the removal of malachite green oxalate dye, Iran. J. Chem. Chem. Eng., 37 (2018) 11–22.
  9. M. Bahram, S. Asadi, Gh. Karimnezhad, Synthesized poly styrene-alt-maleic acid hydrogel for removal of azo dyes, methylene blue and methyl orange, from aqueous media, J. Iran. Chem. Soc., 12 (2015) 639–645.
  10. N.M. Mahmoodi, Z. Hosseinabadi-Farahani, H. Chamani, Synthesis of nanoadsorbent and modeling of dye removal from wastewater using adaptive neuro-fuzzy inference system, Desal. Wat. Treat., 75 (2017) 245–252.
  11. A. Chaochon, S. Sirianuntapiboon, Biological textile dye removal mechanism of direct blue 15 (DB15) by anoxic/oxic-SBR system, Desal. Wat. Treat., 75 (2017) 237–244.
  12. E. Karadag, B. Yel, S. Kundakcı, Ö.B. Üzüm, Synthesis and application of acrylamide/sodium vinylsulfonate/carboxymethylcellulose/zeolite hybrid hydrogels as highly swollen effective adsorbents for model cationic dye removal, Desal. Wat. Treat., 74 (2017) 402–414.
  13. S.N. Mohseni, A.A. Amooey, H. Tashakkorian, A. Amouei, A comparative survey of linear and non-linear regression analysis on removal efficiency of clinoptilolite for sorption of dexamethasone from aqueous solutions, Desal. Wat. Treat., 67 (2017) 231–238.
  14. M.R. Gadekar, M.M. Ahammed, Coagulation/flocculation process for dye removal using water treatment residuals: modelling through artificial neural networks, Desal. Wat. Treat., 55–57 (2016) 26392–26400.
  15. T.-H. Kim, C. Park, E.-B. Shin, S.Y. Kim, Decolorization of disperse and reactive dyes by continuous electrocoagulation process, Desalination, 150 (2002) 165–175.
  16. J. Wang, L.J. Qin, J.Y. Lin, J.Y. Zhu, Y.T. Zhang, J.D. Liu, B. Van der Bruggen, Enzymatic construction of antibacterial ultrathin membranes for dyes removal, Chem. Eng. J., 323 (2017) 56–63.
  17. S.H. Lin, C.F. Peng, Continuous treatment of textile wastewater by combined coagulation, electrochemical oxidation and activated sludge, Water Res., 30 (1996) 587–592.
  18. Y.B. Zhou, J. Lu, Y. Zhou, Y.D. Liu, Recent advances for dyes removal using novel adsorbents: a review, Environ. Pollut., 252 (2019) 352–365.
  19. V. Katheresan, J. Kansedo, S.Y. Lau, Efficiency of various recent wastewater dye removal methods: a review, J. Environ. Chem. Eng., 6 (2018) 4676–4697.
  20. K. Grace Pavithra, P. Senthil Kumar, V. Jaikumar, P. Sundar Rajan, Removal of colorants from wastewater: a review on sources and treatment strategies, J. Ind. Eng. Chem., 75 (2019) 1–19.
  21. S. Krishnan, H. Rawindran, C.M. Sinnathambi, J.W. Lim, Comparison of various advanced oxidation processes used in remediation of industrial wastewater laden with recalcitrant pollutants, IOP Conf. Ser.: Mater. Sci. Eng., 206 (2017) 012089.
  22. A. Nezamzadeh-Ejhieh, M. Khorsandi, Photodecolorization of Eriochrome Black T using NiS-P zeolite as a heterogeneous catalyst, J. Hazard. Mater., 176 (2010) 629–637.
  23. Y. Deng, R. Zhao, Advanced oxidation processes (AOPs) in wastewater treatment, Curr. Pollut. Rep., 1 (2015) 167–176.
  24. B. Cuiping, G. Wenqi, F. Dexin, X. Mo, Z. Qi, C. Shaohua, G. Zhongxue, Z. Yanshui, Natural graphite tailings as heterogeneous Fenton catalyst for the decolorization of rhodamine B, Chem. Eng. J., 197 (2012) 306–313.
  25. C. EL Bekkali, H. Bouyarmane, S. Laasri, A. Laghzizil, A. Saoiabi, Effects of metal oxide catalysts on the photodegradation of antibiotics effluent, Iran. J. Catal., 8 (2018) 241–247.
  26. H. Che, G. Che, E. Jiang, C. Liu, H. Dong, C. Li, A novel Z-scheme CdS/Bi3O4Cl heterostructure for photocatalytic degradation of antibiotics: mineralization activity, degradation pathways and mechanism insight, J. Taiwan Inst. Chem. Eng., 91 (2018) 224–234.
  27. K. Thirumalaia, M. Shanthia, M. Swaminathan, Natural sunlight active GdVO4–ZnO nanomaterials for photo-electrocatalytic and self-cleaning applications, J. Water Process Eng., 17 (2017) 149–160.
  28. M. Karimi-Shamsabadi, M. Behpour, A. Kazemi Babaheidari, Z. Saberi, Efficiently enhancing photocatalytic activity of NiO-ZnO doped onto nanozeoliteX by synergistic effects of p-n heterojunction, supporting and zeolite nanoparticles in photo-degradation of Eriochrome Black T and Methyl Orange, J. Photochem. Photobiol., A, 346 (2017) 133–143.
  29. M. Shaban, M.R. Abukhadra, A. Hamd, Recycling of glass in synthesis of MCM‑48 mesoporous silica as catalyst support for Ni2O3 photocatalyst for Congo red dye removal, Clean Technol. Environ. Policy, 20 (2018) 13–28.
  30. H. Chen, N. Chen, C. Feng, Y. Gao, Synthesis of a novel narrow band-gap iron(II,III) oxide/titania/silver silicate nanocomposite as a highly efficient and stable visible light-driven photocatalyst, J. Colloid Interface Sci., 515 (2018) 119–128.
  31. K. Thirumalai, S. Balachandran, M. Swaminathan, Superior photocatalytic, electrocatalytic, and self-cleaning applications of fly ash supported ZnO nanorods, Mater. Chem. Phys., 183 (2016) 191–200.
  32. S. Dianat, Visible light induced photocatalytic degradation of direct red 23 and direct brown 166 by InVO4-TiO2 nanocomposite, Iran. J. Catal., 8 (2018) 121–132.
  33. P. Raizada, J. Kumari, P. Shandilya, P. Singh, Kinetics of photocatalytic mineralization of oxytetracycline and ampicillin using activated carbon supported ZnO/ZnWO4 nanocomposite in simulated wastewater, Desal. Wat. Treat., 79 (2017) 204–213.
  34. M.L. Maya-Treviño, J.L. Guzmán-Mar, L. Hinojosa-Reyes, A. Hernández-Ramírez, Synthesis and photocatalytic activity of ZnO-CuPc for methylene blue and potassium cyanide degradation, Mater. Sci. Semicond. Process., 77 (2018) 74–82.
  35. N. Masoudipour, M. Sadeghi, F. Mohammadi-Moghadam, Photo-catalytic inactivation of E. coli using stabilized Ag/S, N–TiO2 nanoparticles by fixed bed photo-reactor under visible light and sunlight, Desal. Wat. Treat., 110 (2018) 109–116.
  36. N. Zhang, G. Li, T. Xie, L. Li, Amorphous tantalum oxyhydroxide homojunction: in situ construction for enhanced hydrogen production, J. Colloid Interface Sci., 525 (2018) 196–205.
  37. B.A. Ünnü, G. Gündüz, M. Dükkancı, Heterogeneous Fenton-like oxidation of crystal violet using an iron loaded ZSM-5 zeolite, Desal. Wat. Treat., 57 (2016) 11835–11849.
  38. S. Landi Jr., J. Carneiro, S. Ferdov, A.M. Fonseca, I.C. Neves, M. Ferreira, P. Parpot, O.S.G.P. Soares, M.F.R. Pereira, Photocatalytic degradation of Rhodamine B dye by cotton textile coated with SiO2-TiO2 and SiO2-TiO2-HY composites, J. Photochem. Photobiol., A, 346 (2017) 60–69.
  39. M. Salah, N. Samy, M. Fadel, Methylene blue mediated photodynamic therapy for resistant plaque psoriasis, J. Drugs Dermatol., 8 (2009) 42–49.
  40. WHO Model List of Essential Medicines (19th List) (PDF), World Health Organization, April 2015, Archived (PDF) From the Original on 13 December 2016, Retrieved 8 December 2016.
  41. Methylene Blue, The American Society of Health-System Pharmacists, Archived From the Original on 10 May 2017, Retrieved 8 January 2017.
  42. M.M. Hamed, I.M. Ahmed, S.S. Metwally, Adsorptive removal of methylene blue as organic pollutant by marble dust as ecofriendly sorbent, J. Ind. Eng. Chem., 20 (2014) 2370–2377.
  43. D. Mitoraj, U. Lamdab, W. Kangwansupamonkon, M. Pacia, W. Macyk, N. Wetchakun, R. Beranek, Revisiting the problem of using methylene blue as a model pollutant in photocatalysis: the case of InVO4/BiVO4 composites, J. Photochem. Photobiol., A, 366 (2018) 103–110.
  44. N. Qutub, B.M. Pirzada, K. Umar, S. Sabir, Synthesis of CdS nanoparticles using different sulfide ion precursors: formation mechanism and photocatalytic degradation of Acid Blue-29, J. Environ. Chem. Eng., 4 (2016) 808–817.
  45. D. Zhang, H. Tang, Y. Wang, K. Wu, H. Huang, G. Tang, J. Yang, Synthesis and characterization of graphene oxide modified AgBr nanocomposites with enhanced photocatalytic activity and stability under visible light, Appl. Surf. Sci., 319 (2014) 306–311.
  46. J.-Q. Xiao, K.-S. Lin, Y. Yu, Novel Ag@AgCl@AgBr heterostructured nanotubes as high-performance visible-light photocatalysts for decomposition of dyes, Catal. Today, 314 (2018) 10–19.
  47. B.S. Rao, B.R. Kumar, V.R. Reddy, T.S. Rao, Preparation and characterization of CdS nanoparticles by chemical co-precipitation technique, Chalcogenide Lett., 8 (2011) 177–185.
  48. P. Rodrgues, N. Muñoz-Aguirre, E. San-Martin, G. Gonzalez, Formation of CdS nanoparticles using starch as capping agent, Appl. Surf. Sci., 255 (2008) 740–742.
  49. M. Zebardast, A. Fallah Shojaei, K. Tabatabaeian, Enhanced removal of methylene blue dye by bimetallic nano-sized MOF-5s, Iran. J. Catal., 8 (2018) 297–309.
  50. P. Scherrer, Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgensrahlen [Determination of the size and internal structure of colloidal particles using X-rays], Nachr Ges Wiss Goettingen, Math-Phys Kl., 1918 (1918) 98‑100, (In German).
  51. A. Jose, S. Devi, D. Pinheiro, S.L. Narayana, Electrochemical synthesis, photodegradation and antibacterial properties of PEG capped zinc oxide nanoparticles, J. Photochem. Photobiol., B, 187 (2018) 25–34.
  52. J. Guan, J. Li, Z. Ye, D. Wu, C. Liu, H. Wang, C. Ma, P. Huo, Y. Yan, La2O3 media enhance d electrons transfer for improved CeVO4 @ halloysite nanotubes photocatalytic activity for removing tetracycline, J. Taiwan Inst. Chem. Eng., 96 (2019) 281–298.
  53. K. Li, J. Xue, Y. Zhang, H. Wei, Y. Liu, C. Dong, ZnWO4 nanorods decorated with Ag/AgBr nanoparticles as highly efficient visible-light-responsive photocatalyst for dye AR18 photodegradation, Appl. Surf. Sci., 320 (2014) 1–9.
  54. A. Nezamzadeh-Ejhieh, M. Bahrami, Investigation of the photocatalytic activity of supported ZnO–TiO2 on clinoptilolite nanoparticles towards photodegradation of wastewater-contained phenol, Desal. Wat. Treat., 55 (2015) 1096–1104.
  55. S. Ghattavi, A. Nezamzadeh-Ejhieh, A brief study on the boosted photocatalytic activity of AgI/WO3/ZnO in the degradation of Methylene Blue under visible light irradiation, Desal. Wat. Treat., 166 (2019) 92–104.
  56. P. Mohammadyari, A. Nezamzadeh-Ejhieh, Supporting of mixed ZnS–NiS semiconductors onto clinoptilolite nanoparticles to improve its activity in photodegradation of 2-nitrotoluene, RSC Adv., 5 (2015) 75300–75310.
  57. D. Heger, J. Jirkovsky, P. Klán, Aggregation of Methylene Blue in frozen aqueous solutions studied by absorption spectroscopy, J. Phys. Chem. A, 109 (2005) 6702–6709.
  58. S. Senobari, A. Nezamzadeh-Ejhieh, A p-n junction NiO–CdS nanoparticles with enhanced photocatalytic activity: a response surface methodology study, J. Mol. Liq., 257 (2018) 173–183.
  59. S. Loghambal, A.J. Agvinos Catherine, S. Velu Subash, Analysis of Langmuir-Hinshelwood kinetics model for photocatalytic degradation of aqueous direct blue 71 through analytical expression, Int. J. Math. Appl., 6 (2018) 903–913.
  60. Y. Liu, L. Shen, From Langmuir kinetics to first- and second-order rate equations for adsorption, Langmuir, 24 (2008) 11625–11630.
  61. J. Lin, L. Wang, C. Sun, Influence factors and kinetic study on photocatalytic degradation of Rhodamine B by Fe-doped TiO2/diatomite composite, Adv. Mater. Res., 535–537 (2012) 2209–2213.
  62. G.V. Morales, E.L. Shan, R. Cornejo, E.M. Farfan Torres, Kinetic studies of the photocatalytic degradation of tartrazine, Lat. Am. Appl. Res., 42 (2012) 45–49.
  63. A. Nezamzadeh-Ejhieh, Z. Ghanbari-Mobarakehi, Heterogeneous photodegradation of 2,4-dichlorophenol using FeO doped onto nanoparticles of zeolite P, J. Ind. Eng. Chem., 21 (2015) 668–676.
  64. N. Omrani, A. Nezamzadeh-Ejhieh, M. Alizadeh, Brief study on the kinetic aspect of photodegradation of sulfasalazine aqueous solution by cuprous oxide/cadmium sulfde nanoparticles, Desal. Wat. Treat., 162 (2019) 290–302.
  65. M. Zarifeh-Alsadat, A. Nezamzadeh-Ejhieh, Removal of phenol content of an industrial wastewater via a heterogeneous photodegradation process using supported FeO onto nanoparticles of Iranian clinoptilolite, Desal. Wat. Treat., 57 (2016) 16483–16494.
  66. S.A.P. Pereira, S.P.F. Costa, E. Cunha, M.L.C. Passos, A.R.S.T. Araújo, M.L.M.F.S. Saraiva, Manual or automated measuring of antipsychotics’ chemical oxygen demand, Ecotoxicol. Environ. Saf., 152 (2018) 55–60.