1. K.P. Fattah, D.S. Mavinic, F.A. Koch, Influence of process parameters on the characteristics of struvite pellets, J. Environ. Eng., 138 (2012) 1200–1209.
  2. Q. Ping, Y.M. Li, X.H. Wu, L. Yang, L. Wang, Characterization of morphology and component of struvite pellets crystallized from sludge dewatering liquor: effects of total suspended solid and phosphate concentrations, J. Hazard. Mater., 310 (2016) 261–269.
  3. Y.-J. Shih, R.R.M. Abarca, M.D.G. de Luna, Y.-H. Huang, M.-C. Lu, Recovery of phosphorus from synthetic wastewaters by struvite crystallization in a fluidized-bed reactor: effects of pH, phosphate concentration and coexisting ions, Chemosphere, 173 (2017) 466–473.
  4. S.G. Barbosa, L. Peixoto, B. Meulman, M.M. Alves, M.A. Pereira, A design of experiments to assess phosphorous removal and crystal properties in struvite precipitation of source separated urine using different Mg sources, Chem. Eng. J., 298 (2016) 146–153.
  5. D. Crutchik, J.M. Garrido, Kinetics of the reversible reaction of struvite crystallisation, Chemosphere, 154 (2016) 567–572.
  6. N. Hutnik, A. Kozik, A. Mazienczuk, K. Piotrowski, B. Wierzbowska, A. Matynia, Phosphates (V) recovery from phosphorus mineral fertilizers industry wastewater by continuous struvite reaction crystallization process, Water Res., 47 (2013) 3635–3643.
  7. E. Tarragó, S. Puig, M. Ruscalleda, M.D. Balaguer, J. Colprim, Controlling struvite particles’ size using the up-flow velocity, Chem. Eng. J., 302 (2016) 819–827.
  8. Y.-H. Song, G.-L. Qiu, P. Yuan, X.-Y. Cui, J.-F. Peng, P. Zeng, L. Duan, L.-C. Xiang, F. Qian, Nutrients removal and recovery from anaerobically digested swine wastewater by struvite crystallization without chemical additions, J. Hazard. Mater., 190 (2011) 140–149.
  9. K. Suzuki, Y. Tanaka, T. Osada, M. Waki, Removal of phosphate, magnesium and calcium from swine wastewater through crystallization enhanced by aeration, Water Res., 36 (2002) 2991–2998.
  10. P.J. Talboys, J. Heppell, T. Roose, J.R. Healey, D.L. Jones, P.J.A. Withers, Struvite: a slow-release fertiliser for sustainable phosphorus management?, Plant Soil, 401 (2016) 109–123.
  11. R. Cabeza, B. Steingrobe, W. Römer, N. Claassen, Effectiveness of recycled P products as P fertilizers, as evaluated in pot experiments, Nutr. Cycling Agroecosyst., 91 (2011) 173–184.
  12. R. Boistelle, F. Abbona, Nucleation of struvite (MgNH4PO4·6H2O) single crystals and aggregates, Cryst. Res. Technol., 20 (1985) 133–140.
  13. J.W. Mullin, Crystallization, 4th ed., Elsevier Butterworth-Heinemann, Oxford, 2001.
  14. C.M. Mehta, D.J. Batstone, Nucleation and growth kinetics of struvite crystallization, Water Res., 47 (2013) 2890–2900.
  15. K. Shimamura, T. Tanaka, Y. Miura, H. Ishikawa, Development of a high-efficiency phosphorus recovery method using a fluidized-bed crystallized phosphorus removal system, Water Sci. Technol., 48 (2003) 163–170.
  16. A. Adnan, M. Dastur, D.S. Mavinic, F.A. Koch, Preliminary investigation into factors affecting controlled struvite crystallization at the bench scale, J. Environ. Eng. Sci., 3 (2004) 195–202.
  17. S. Titiz-Sargut, J. Ulrich, Application of a protected ultrasound sensor for the determination of the width of the metastable zone, Chem. Eng. Process. Process Intensif., 42 (2003) 841–846.
  18. T.L. Threlfall, S.J. Coles, A perspective on the growth-only zone, the secondary nucleation threshold and crystal size distribution in solution crystallisation, CrystEngComm., 18 (2016) 369–378.
  19. H.Y. Yang, Relation between metastable zone width and induction time of butyl paraben in ethanol, CrystEngComm., 17 (2015) 577–586.
  20. I. Ali, P.A. Schneider, Crystallization of struvite from metastable region with different types of seed crystal, J. Non-Equilib. Thermodyn., 30 (2005) 95–111.
  21. M.I.H. Bhuiyan, D.S. Mavinic, R.D. Beckie, Nucleation and growth kinetics of struvite in a fluidized bed reactor, J. Cryst. Growth, 310 (2008) 1187–1194.
  22. E. Ariyanto, Crystallisation and Dissolution Studies of Struvite in Aqueous Solutions, Curtin University, Perth, Western Australia, 2013.
  23. L.P. Qiu, L. Shi, Z. Liu, K. Xie, J.B. Wang, S.B. Zhang, Q.Q. Song, L.Q. Lu, Effect of power ultrasound on crystallization characteristics of magnesium ammonium phosphate, Ultrason. Sonochem., 36 (2017) 123–128.
  24. C. Sartorius, J. von Horn, F. Tettenborn, Phosphorus recovery from wastewater—expert survey on present use and future potential, Water Environ. Res., 84 (2012) 313–322.
  25. K.N. Ohlinger, T.M. Young, E.D. Schroeder, Predicting struvite formation in digestion, Water Res., 32 (1998) 3607–3614.
  26. M. Hanhoun, L. Montastruc, C. Azzaro-Pantel, B. Biscans, M. Frèche, L. Pibouleau, Temperature impact assessment on struvite solubility product: a thermodynamic modeling approach, Chem. Eng. J., 167 (2011) 50–58.
  27. R.R. Hemrajani, G.B. Tatterson, Mechanically Stirred Vessels, Chapter 6, E.L. Paul, V.A. Atiemo-Obeng, S.M. Kresta, Eds., Handbook of Industrial Mixing: Science and Practice, John Wiley & Sons, Inc., New Jersey, 2004, p. 361.
  28. L. Egle, H. Rechberger, M. Zessner, Overview and description of technologies for recovering phosphorus from municipal wastewater, Resour. Conserv. Recycl., 105 (2015) 325–346.
  29. M. Ronteltap, M. Maurer, R. Hausherr, W. Gujer, Struvite precipitation from urine – influencing factors on particle size, Water Res., 44 (2010) 2038–2046.
  30. F. Abbona, H.E. Lundager Madsen, R. Boistelle, Crystallization of two magnesium phosphates, struvite and newberyite: effect of pH and concentration, J. Cryst. Growth, 57 (1982) 6–14.
  31. N. Kubota, A new interpretation of metastable zone widths measured for unseeded solutions, J. Cryst. Growth, 310 (2008) 629–634.
  32. L.-D. Shiau, The influence of solvent on the pre-exponential factor and interfacial energy based on the metastable zone width data, CrystEngComm., 18 (2016) 6358–6364.
  33. J. Nývlt, Kinetics of nucleation in solutions, J. Cryst. Growth, 3–4 (1968) 377–383.
  34. E. Lyall, P. Mougin, D. Wilkinson, K.J. Roberts, In situ ultrasonic spectroscopy study of the nucleation and growth of copper sulfate pentahydrate batch crystallized from supersaturated aqueous solutions, Ind. Eng. Chem. Res., 43 (2004) 4947–4956.
  35. D. Mealey, D.M. Croker, Å.C. Rasmuson, Crystal nucleation of salicylic acid in organic solvents, CrystEngComm., 17 (2015) 3961–3973.
  36. K.S. Le Corre, E. Valsami-Jones, P. Hobbs, S.A. Parsons, Kinetics of struvite precipitation: effect of the magnesium dose on induction times and precipitation rates, Environ. Technol., 28 (2007) 1317–1324.
  37. O. Sahin, M. Ozdemir, M.S. Izgp, H. Demir, A.A. Ceyhan, Determination of nucleation kinetics of ammonium biborate tetrahydrate, Rev. Chim., 65 (2014) 1–5.
  38. K.P. Liang, G. White, D. Wilkinson, L.J. Ford, K.J. Roberts, W.M.L. Wood, Examination of the process scale dependence of L-glutamic acid batch crystallized from supersaturated aqueous solutions in relation to reactor hydrodynamics, Ind. Eng. Chem. Res., 43 (2004) 1227–1234.
  39. L. Bauer, R.W. Rousseau, W.L. McCabe, Influence of crystal size on the rate of contact nucleation in stirred-tank crystallizers, AIChE J., 20 (1974) 653–659.
  40. N. Gherras, G. Fevotte, Comparison between approaches for the experimental determination of metastable zone width: a case study of the batch cooling crystallization of ammonium oxalate in water, J. Cryst. Growth, 342 (2012) 88–98.
  41. S. Kataki, H. West, M. Clarke, D.C. Baruah, Phosphorus recovery as struvite: recent concerns for use of seed, alternative Mg source, nitrogen conservation and fertilizer potential, Resour. Conserv. Recycl., 107 (2016) 142–156.
  42. A. Adnan, F.A. Koch, D.S. Mavinic, Pilot-scale study of phosphorus recovery through struvite crystallization — II: applying in-reactor supersaturation ratio as a process control parameter, J. Environ. Eng. Sci., 2 (2003) 473–483.
  43. K. Shimamura, I. Hirasawa, H. Ishikawa, T. Tanaka, Phosphorus recovery in a fluidized bed crystallization reactor, J. Chem. Eng. Jpn., 39 (2006) 1119–1127.
  44. S.S. Kadam, S.A. Kulkarni, R.C. Ribera, A.I. Stankiewicz, J.H. ter Horst, H.J.M. Kramer, A new view on the metastable zone width during cooling crystallization, Chem. Eng. Sci., 72 (2012) 10–19.