References

  1. Y. Li, X. Li, J. Li, J. Yin, Photocatalytic degradation of methyl orange by TiO2-coated activated carbon and kinetic study, Water Res., 40 (2006) 1119–1126.
  2. R. Leary, A. Westwood, Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis, Carbon, 49 (2011) 741–772.
  3. Z. Aksu, Application of biosorption for the removal of organic pollutants: a review, Process Biochem., 40 (2005) 997–1026.
  4. J.M. Dias, M.C. Alvim-Ferraz, M.F. Almeida, J. Rivera-Utrilla, M. Sanchez-Polo, Waste materials for activated carbon preparation and its use in aqueous-phase treatment: a review, J. Environ. Manage., 85 (2007) 833–846.
  5. S.M. El-Khouly, G.M. Mohamed, N.A. Fathy, G.A. Fagal, Effect of nanosized CeO2 or ZnO loading on adsorption and catalytic properties of activated carbon, Adsorpt. Sci. Technol., 35 (2017) 774–788.
  6. P. Muthirulan, M. Meenakshisundararam, N. Kannan, Beneficial role of ZnO photocatalyst supported with porous activated carbon for the mineralization of alizarin cyanin green dye in aqueous solution, J. Adv. Res., 4 (2013) 479–484.
  7. H.K. FaragReham, M.M. Aboelenin, N.A. Fathy, Photodegradation of methyl orange dye by ZnO loaded onto carbon xerogels composites, Asia-Pac. J. Chem. Eng., 12 (2017) 4–12.
  8. X. Zhang, J. Qin, R. Hao, L. Wang, X. Shen, R. Yu, S. Limpanart, M. Ma, R. Liu, Carbon-doped ZnO nanostructures: facile synthesis and visible light photocatalytic applications, J. Phys. Chem., C119 (2015) 20544−20554.
  9. EPA, 198b, Wood Preservative Pesticides: Creosote, Pentachlorophenol, Inorganic Arsenicals, Position document 4, U.S. Environmental Protection Agency, Office of Pesticide and Toxic Substances, Washington, DC.
  10. U.S. Environmental Protection Agency, Office of Drinking Water, Pentachlorophenol, Health Advisory, Draft Report, March 1987.
  11. E.Y. Kim, H.J. Chae, K.H. Chu, Enzymatic oxidation of aqueous pentachlorophenol, J. Environ. Sci., 19 (2007) 1032–1036
  12. G. Asgari, A.M. Seidmohammadi, A. Chavoshani, A.R. Rahmani, Microwave/H2O2 efficiency in pentachlorophenol removal from aqueous solutions, J. Res Health Sci., 14 (2014) 36–39.
  13. H. Movahedyan, A.M. Seidmohammadi, Comparison of different advanced oxidation process degradation P-cholorophenol in aqueous solutions, J. Environ Health, 6 (2009) 153–160.
  14. R. Shokoohi, S. Azizi, S. A. Ghiasian, A. Poormohammadi, Biosorption of pentachlorophenol from aqueous solutions by Aspergillus niger biomass, J. Toxicol., 10 (2016) 33–39.
  15. R. Marouf, N. Khelifa, K.M. Khelifa, J. Schott, A. Khelifa, Removal of pentachlorophenol from aqueous solutions by dolomitic sorbents, Colloid Interface Sci., 297 (2006) 45–53.
  16. C.A. Nunes; M.C. Guerreiro, Estimation of surface area and pore volume of activated carbons by methylene blue and iodine numbers, J. Quím. Nova, 34 (2011) 472–476.
  17. B. Bestani, N. Benderdouche, B. Benstaali, M. Belhakem, A. Addou, Methylene blue and iodine adsorption onto an activated desert plant, Bioresour. Technol., 99 (2008) 8441–8444.
  18. P.A. Connor, K.D. Dobson, J.A. McQuillan, Infrared spectroscopy of the TiO2/aqueous solution interface, Langmuir, 15 (1999) 2402–2408.
  19. J. Chen, X. Wen, X. Shi, R. Pan, Synthesis of zinc oxide/activated carbon nano-composites and photodegradation of Rhodamine B, Environ. Eng. Sci., 29 (2012) 392–398.
  20. H. Belayachi, B. Bestani, N. Benderdouche, M. Belhakem, The use of TiO2 immobilized into grape marc-based activated carbon for RB-5 Azo dye photocatalytic degradation, Arab. J. Chem., (2015), doi.org/10.1016/j.arabjc.2015.06.040.
  21. L. Zhang, H. Cheng, R. Zong, Y. Zhu, Photocorrosion suppression of ZnO nanoparticles via hybridization with graphite-like carbon and enhanced photocatalytic activity, J. Phys. Chem. C, 113 (2009) 2368–2374.
  22. J. Xu, Y. Ao, M. Chen, D. Fu, C. Yuan, Photocatalytic activity of vanadium-doped titania–activated carbon composite film under visible light, Thin Solid Films, 518 (2010) 4170–4174.
  23. N. Sobana, M. Muruganandam, M. Swaminathan, Characterization of AC–ZnO catalyst and its photocatalytic activity on 4-acetylphenol degradation, Catal. Commun., 9 (2008) 262–268.
  24. B. Fabre, J. Ayele, M. Mazet, P. Lafrance, Adsorption of pentachlorophenol on various materials: influence of organiccoadsorbants (humic substances andlindane), Water Sci., 3 (1990) 277–292.
  25. L. Naidja, Removal of Orange II Dye in Aqueous Solution by Photochemistry and Adsorption, Master Thesis, University of Mentouri de Constantine, Algeria, 2010.
  26. H. Belayachi, Preparation of Carbon Porous Supports by Impregnation, Doctoral Thesis, Abdelhamid ibn Badis University, Mostaganem, 2016.
  27. N. Bouziane, Removal of 2-Mercaptobenzothiazole by Photochemistry and Adorption on Bentonite and Powedered Active Carbon, Master Thesis, University Mentouri of Constantine, Algeria, 2007.
  28. C.H. Giles, T.H. MacEwan, S.N. Nakhwa, D. Smith, Studies in adsorption. Part XI. A System of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids, J. Chem. Soc., 786 (1960) 3973–3993.
  29. M.M.G. HernándezOrta, J.M. Barrón, R.M.G. Coronado, R.L. Ramos, Adsorción de pentaclorofenol en soluciónacuosa sobre carbones activadoscomerciales, Rev. Int. Contam. Ambient., 19 (2003) 137–144.
  30. Z. Zhou, Y. Zhang, H. Wang, T. Chen, W. Lu, The comparative photodegradation activities of pentachlorophenol (PCP) and polychlorinated biphenyls (PCBs) using UV alone and TiO2- derived photocatalysts in methanol soil washing solution, PLoS One, 9 (2014) e108765.
  31. M.M. Ba-Abbad, A.A.H. Kadhum, A.A. Al-Amiery, A.B. Mohamad, M.S. Takriff, Toxicity evaluation for low concentration of chlorophenols under solar radiation using zinc oxide (ZnO) nanoparticles, Phys. Sci., 7 (2012) 48–52.
  32. M.M. Ba-Abbad, M.S. Takriff, M. Said, A. Benamor, M.S. Nasser, A.W. Mohammad, Photocatalytic degradation of pentachlorophenol using ZnO nanoparticles: study of intermediates and toxicity, Int. J. Environ. Res., 11 (2017) 461–473.
  33. M.M. Ba-Abbad, M.S. Takriff, A.W. Mohammad, Enhancement of 2-chlorophenol photocatalytic degradation in the presence Co2+-doped ZnO nanoparticles under direct solar radiation, Res. Chem. Intermed., 42 (2016) 5219–5236.
  34. Y. Guo, H. Wang, C. He, L. Qiu, X. Cao, Uniform carbon-coated ZnO nanorods: microwave-assisted preparation, cytotoxicity and photocatalytic activity, Langmuir, 25 (2009) 4678–4684.
  35. A.A. Initha, Photocatalytic Degradation of Carbamazepine Using Graphene-TiO2 Nanocomposites, Doctoral Thesis, University of Singapore, 2015.
  36. R. Djellabi, Contribution of Photo-catalysis to the Elimination of Industrial Pollutants, Doctoral Thesis, University of Annaba, Algeria, 2014.
  37. H. Bessaha, Syntheses, Characterizations and Applications of Anionic Clays of the Hydrotalcite Type to the Depollution of Waters, Doctoral Thesis, University of Mostaganem, Algeria, 2017.
  38. E. Weiss, Kinetic Study of the Electrochemical Degradation of Organic Compounds on the Boron Doped Diamond Anode: Application to the Depollution of Aqueous Effluents, Doctoral Thesis, University of Paul Sabatier, France, 2006.
  39. F. Sabin, Th. Tiirk, A. Vogler, Photo-oxidation of organic compounds in the presence of titanium dioxide: determination of the efficiency, J. Photochem. Photobiol. A Chem., 63 (1992) 99–106.
  40. R.W. Matthews, Purification of water with near-u.v. illuminated suspensions of titanium dioxide, Water Res., 24 (1990) 653–660.
  41. G.P. Atheba, Water Treatment by the Combined Action of Solar Photocatalysis and Adsorption on Activated Carbon: Design and Implementation of the Process, Doctoral Thesis, University of Paul Verlaine, Metz, France, 2009.
  42. E.F. Mohamed, Removal of Organic Compounds from Water by Adsorption and Photocatalytic Oxidation, Doctoral Thesis, University of Toulouse, France, 2011.
  43. L. Benhamed, Improvement by Adding a Transition Metal of the In Situ Regeneration of an Activated Carbon by Catalytic Oxidation, Doctoral Thesis, University of Toulouse, France, 2015.