References

  1. A. Azari, H. Gharibi, B. Kakavandi, G. Ghanizadeh, A. Javid, A.H. Mahvi, K. Sharafi, T. Khosravia, Magnetic adsorption separation process: an alternative method of mercury extracting from aqueous solution using modified chitosan coated Fe3O4 nanocomposites, J. Chem. Technol. Biotechnol., 92 (2017) 188–200.
  2. Y. Vasseghian, E.-N. Dragoi, Modeling and optimization of acid blue 193 removal by UV and peroxydisulfate process, J. Environ. Eng., 144 (2018) 06018003.
  3. K. Sharafi, A.M. Mansouri, A.A. Zinatizadeh, M. Pirsaheb, Adsorptive removal of methylene blue from aqueous solutions by pumice powder: process modelling and kinetic evaluation, Environ. Eng. Manage. J. (EEMJ), 14 (2015) 1067–1078.
  4. M. Pirsaheb, Z. Rezai, A. Mansouri, A. Rastegar, A. Alahabadi, A.R. Sani, K. Sharafi, Preparation of the activated carbon from India shrub wood and their application for methylene blue removal: modelling and optimization, Desal. Wat. Treat., 57 (2016) 5888–5902.
  5. B. Hameed, M. El-Khaiary, Batch removal of malachite green from aqueous solutions by adsorption on oil palm trunk fibre: equilibrium isotherms and kinetic studies, J. Hazard. Mater., 154 (2008) 237–244.
  6. M. Anbia, A. Ghaffari, Removal of malachite green from dye wastewater using mesoporous carbon adsorbent, J. Iran. Chem. Soc., 8 (2011) S67–S76.
  7. A. Karami, K. Karimyan, R. Davoodi, M. Karimaei, K. Sharafie, S. Rahimi, T. Khosravi, M. Miri, H. Sharafi, A. Azari, Application of response surface methodology for statistical analysis, modeling, and optimization of malachite green removal from aqueous solutions by manganese-modified pumice adsorbent, Desal. Wat. Treat., 89 (2017) 150–161.
  8. Y. Uma, U. Sharma, Removal of malachite green from aqueous solutions by adsorption on to timber waste, Int. J. Environ. Eng. Mgmt., 4 (2013) 631–638.
  9. A.S. Sartape, A.M. Mandhare, V.V. Jadhav, P.D. Raut, M.A. Anuse, S.S. Kolekar, Removal of malachite green dye from aqueous solution with adsorption technique using Limonia acidissima (wood apple) shell as low cost adsorbent, Arab. J. Chem., 10 (2017) S3229–S3238.
  10. T. Santhi, S. Manonmani, V. Vasantha, Y. Chang, A new alternative adsorbent for the removal of cationic dyes from aqueous solution, Arab. J. Chem., 9 (2016) S466–S474.
  11. F. Gündüz, B. Bayrak, Biosorption of malachite green from an aqueous solution using pomegranate peel: equilibrium modelling, kinetic and thermodynamic studies, J. Mol. Liq., 243 (2017) 790–798.
  12. M. Moradi, M. Fazlzadehdavil, M. Pirsaheb, Y. Mansouri, T. Khosravi, K. Sharafi, Response surface methodology (RSM) and its application for optimization of ammonium ions removal from aqueous solutions by pumice as a natural and low cost adsorbent, Arch. Environ. Prot., 42 (2016) 33–43.
  13. F.Ö. Akbal, N. Akdemir, A.N. Onar, FT-IR spectroscopic detection of pesticide after sorption onto modified pumice, Talanta, 53 (2000) 131–135.
  14. M. Moradi, A.M. Mansouri, N. Azizi, J. Amini, K. Karimi, K. Sharafi, Adsorptive removal of phenol from aqueous solutions by copper Cu-modified scoria powder: process modeling and kinetic evaluation, Desal. Wat. Treat., 57 (2016) 11820–11834.
  15. M. Moradi, M. Soltanian, M. Pirsaheb, K. Sharafi, S. Soltanian, A. Mozafari, The Efficiency Study of pumice Powder to Lead Removal from the Aquatic Environment: Isotherms and Kinetics of the Reaction, J. Mazand. Univ. Med. Sci. (JMUMS), 23 (2014) 64–75.
  16. M. Naderi, K. Sharafi, Removal comparison of methylene blue dye by pumice stone and powder activated carbon from aqueous solutions, Int. J. Pharm. Technol., 8 (2016) 10958–10966.
  17. D. Baş, I.H. Boyacı, Modeling and optimization I: Usability of response surface methodology, J. Food Eng., 78 (2007) 836–845.
  18. N. Mirzaei, H.R. Ghaffari, K. Sharafi, A. Velayati, G. Hoseindoost, S. Rezaei, A.H. Mahvi, A. Azari, K. Dindarloo, Modified natural zeolite using ammonium quaternary based material for Acid red 18 removal from aqueous solution, J. Environ. Chem. Eng., 5 (2017) 3151–3160.
  19. M. Pirsaheb, M. Moradi, H. Ghaffari, K. Sharafi, Application of response surface methodology for efficiency analysis of strong non-selective ion exchange resin column (A 400 E) in nitrate removal from groundwater, Int. J. Pharm. Technol., 8 (2016) 11023–11034.
  20. Y. Vasseghian, M. Ahmadi, M. Joshaghani, Simultaneous ash and sulphur removal from bitumen using column flotation technique: experiments, RSM modeling and optimization, Phys. Chem. Res., 5 (2017) 195–204.
  21. M. Moghri, E.N. Dragoi, A. Salehabadi, D.K. Shukla, Y. Vasseghian, Effect of various formulation ingredients on thermal characteristics of PVC/clay nanocomposite foams: experimental and modeling, ePolymers, 17 (2017) 119–128.
  22. M. Pirsaheb, T. Khosravi, M. Fazlzadeh, K. Sharafie, Effects of loading rate, resin height, and bed volume on nitrate removal from drinking water by non-selective strong anion exchange resin (A400E), Desal. Wat. Treat., 89 (2017) 127–135.
  23. C.-C. Huang, H.-S. Li, C.-H. Chen, Effect of surface acidic oxides of activated carbon on adsorption of ammonia, J. Hazard. Mater., 159 (2008) 523–527.
  24. M. Pirsaheb, M. Mohamadi, A.M. Mansouri, A.A. Zinatizadeh, S. Sumathi, K. Sharafi, Process modeling and optimization of biological removal of carbon, nitrogen and phosphorus from hospital wastewater in a continuous feeding and intermittent discharge (CFID) bioreactor, Korean J. Chem. Eng., 32 (2015) 1340–1353.
  25. N. Mansourian, G. Javedan, M. Darvishmotevalli, K. Sharafi, H. Ghaffari, H. Sharafi, H. Arfaeinia, Efficiency evaluation of zeolite powder, as an adsorbent for the removal of nickel and chromium from aqueous solution: isotherm and kinetic study, Int. J. Pharm. Technol., 8 (2016) 13891–13907.
  26. H. Arfaeinia, B. Ramavandi, K. Sharafi, S. Hashemi, Reductive degradation of ciprofloxacin in aqueous using nanoscale zero valent iron modificated by Mg-aminoclay, Int. J. Pharm. Technol., 8 (2016) 13125–13136.
  27. T.W. Weber, R.K. Chakravorti, Pore and solid diffusion models for fixed bed adsorbers, J. Am. Inst. Chimica. Eng., 20 (1974) 228238.
  28. H. Arfaeinia, H. Sharafi, M. Moradi, M. Ehsanifar, S.E. Hashemi, Efficient degradation of 4-chloro-2-nitrophenol using photocatalytic ozonation with nano-zinc oxide impregnated granular activated carbon (ZnO–GAC), Desal. Wat. Treat., 93 (2017) 145–151.
  29. M. Pirsaheb, H. Mohammadi, K. Sharafi, A. Asadi, Fluoride and nitrate adsorption from water by Fe (III)-doped scoria: optimizing using response surface modeling, kinetic and equilibrium study, Water Sci. Technol. Water Supply, 18 (2018) 1117–1132.
  30. GH. Safari, M. Zarrabi, M. Hoseini, H. Kamani, J. Jaafari, A.H. Mahvi, Trends of natural and acidengineered pumice onto phosphorus ions in aquatic environment: adsorbent preparation, characterization, and kinetic and equilibrium modeling, Desal. Wat. Treat., 54 (2015) 3031–3043.
  31. D. Naghipour, K. Taghavi, J. Jaafari, Y. Mahdavi, M. Ghanbari Ghozikali, R. Ameri, A. Jamshidi, A.H. Mahvi, Statistical modeling and optimization of the phosphorus biosorption by modified Lemna minor from aqueous solution using response surface methodology (RSM), Desal. Wat. Treat., 57 (2016) 19431–19442.
  32. A. Azari, A. Mesdaghinia, G. Ghanizadeh, H. Masoumbeigi, M. Pirsaheb, H.R. Ghafari, T. Khosravi, K. Sharafi, Which is better for optimizing the biosorption process of lead–central composite design or the Taguchi technique?, Water Sci. Technol. Water Supply, 74 (2016) 1446–1456.
  33. M.N. Sepehr, F. Allani, M. Zarrabi, M. Darvishmotevalli, Y. Vasseghian, S. Fadaei, M.M. Fazli, Dataset for adsorptive removal of tetracycline (TC) from aqueous solution via natural light weight expandedclay aggregate (LECA) and LECA coated with manganese oxide nanoparticles in the presence of H2O2, Data Brief, 22 (2019) 676–686.
  34. S. Abo-Farha, Comparative study of oxidation of some azo dyes by different advanced oxidation processes: Fenton, Fenton-like, photo-Fenton and photo-Fenton-like, J. Am. Sci., 6 (2010) 128–142.
  35. M. Danish, T. Ahmad, S. Majeed, M. Ahmad, L. Ziyang, Z. Pin, S.S. Iqubal, Use of banana trunk waste as activated carbon in scavenging methylene blue dye: kinetic, thermodynamic, and isotherm studies, Bioresour. Technol. Rep., 3 (2018) 127–137.
  36. A. Esmaeili, E. Hejazi, Y. Vasseghian, Comparison study of biosorption and coagulation/air flotation methods for chromium removal from wastewater: experiments and neural network modeling, RSC Adv., 5 (2015) 91776–91784.
  37. R.R. Kalantary, M. Moradi, M. Pirsaheb, A. Esrafili, A.J. Jafari, M. Gholami, Y. Vasseghian, E. Antolini, E.-N. Dragoi, Enhanced photocatalytic inactivation of E. coli by natural pyrite in presence of citrate and EDTA as effective chelating agents: experimental evaluation and kinetic and ANN models, J. Environ. Chem. Eng., 7 (2019) 102906.
  38. L.P. Lingamdinne, J. Singh, J.-S. Choi, Y.-Y. Chang, J.-K. Yang, R.R. Karri, J.R. Koduru, Multivariate modeling via artificial neural network applied to enhance methylene blue sorption using graphene-like carbon material prepared from edible sugar, J. Mol. Liq., 265 (2018) 416–427.
  39. S.A. Mousavi, Y. Vasseghian, A. Bahadori, Evaluate the performance of Fenton process for the removal of methylene blue from aqueous solution: experimental, neural network modeling and optimization, Environ. Prog. Sustain. Energy, (2018) (in Press), doi:10.1002/ep.13126.
  40. Y. Vasseghian, N. Heidari, M. Ahmadi, G. Zahedi, A.A. Mohsenipour, Simultaneous ash and sulphur removal from bitumen: experiments and neural network modeling, Fuel. Process. Technol., 125 (2014) 79–85.
  41. O.M. Alharbi, Sorption, kinetic, thermodynamics and artificial neural network modelling of phenol and 3-amino-phenol in water on composite iron nano-adsorbent, J. Mol. Liq., 260 (2018) 261–269.
  42. M.K. Uddin, R.A.K. Rao, K.V.C. Mouli, The artificial neural network and Box-Behnken design for Cu2+ removal by the pottery sludge from water samples: equilibrium, kinetic and thermodynamic studies, J. Mol. Liq., 266 (2018) 617–627.
  43. M. Huang, C. Xu, Z. Wu, Y. Huang, J. Lin, J. Wu, Photocatalytic discolorization of methyl orange solution by Pt modified TiO2 loaded on natural zeolite, Dyes Pigm., 77 (2008) 327–334.
  44. R. Baran, Y. Millot, T. Onfroy, J.-M. Krafft, S. Dzwigaj, Influence of the nitric acid treatment on Al removal, framework composition and acidity of BEA zeolite investigated by XRD, FTIR and NMR, Microporous Mesoporous Mater., 163 (2012) 122–130.
  45. S. Dzwigaj, P. Massiani, A. Davidson, M. Che, Role of Silanol Groups in the Incorporation of V in β Zeolite, J. Mol. Catal. A, 155 (2000) 169–182.
  46. P. Panneerselvam, N. Thinakaran, K. Thiruvenkataravi, M. Palanichamy, S. Sivanesan, Phosphoric acid modified-Y zeolites: A novel, efficient and versatile ion exchanger, J. Hazard. Mater., 159 (2008) 427–434.
  47. M. Heydari, K. Karimyan, M. Darvishmotevalli, A. Karami, Y. Vasseghian, N. Azizi, M. Ghayebzadeh, M. Moradi, Data for efficiency comparison of raw pumice and manganese-modified pumice for removal phenol from aqueous environments— Application of response surface methodology, Data Brief, 20 (2018) 1942–1954.
  48. Y. Kim, C. Kim, I. Choi, S. Rengaraj, J. Yi, Arsenic removal using mesoporous alumina prepared via a templating method, Environ. Sci. Technol., 38 (2004) 924–931.
  49. R. Ajemba, Alteration of bentonite from Ughelli by nitric acid activation: kinetics and physicochemical properties, Indian J. Sci., Technol., 6 (2013) 4076–4083.
  50. J.-X. Guo, S. Shu, X.-L. Liu, X.-J. Wang, H.-Q. Yin, Y.-H. Chu, Influence of Fe loadings on desulfurization performance of activated carbon treated by nitric acid, Environ. Technol., 38 (2017) 266–276.
  51. T.L. Seey, M. Kassim, Acidic and basic dyes removal by adsorption on chemically treated mangrove barks, Int. J. Appl, 2 (2012) 270–276.
  52. L.W. Low, T.T. Teng, A.F. Alkarkhi, A. Ahmad, N. Morad, Optimization of the adsorption conditions for the decolorization and COD reduction of methylene blue aqueous solution using low-cost adsorbent, Water Air Soil Pollut., 214 (2011) 185–195.
  53. B. Hameed, M. El-Khaiary, Malachite green adsorption by rattan sawdust: Isotherm, kinetic and mechanism modeling, J. Hazard. Mater., 159 (2008) 574–579.
  54. K.M. Al-Ahmary, Kinetics and thermodynamic study of Malachite Green adsorption on seeds of dates, Int. J. Sci. Basic Appl., 2 (2013) 27–37.
  55. T. Santhi, S. Manonmani, T. Smitha, Removal of malachite green from aqueous solution by activated carbon prepared from the epicarp of Ricinus communis by adsorption, J. Hazard. Mater., 179 (2010) 178–186.
  56. N. Moraci, P.S. Calabrò, Heavy metals removal and hydraulic performance in zero-valent iron/pumice permeable reactive barriers, J. Environ. Manage., 91 (2010) 2336–2341.
  57. A.K. Panda, B.G. Mishra, D.K. Mishra, R.K. Singh, Effect of sulphuric acid treatment on the physico chemical characteristics of kaolin clay, Colloids Surf., A, 363 (2010) 98–104.
  58. F. Akbal, Adsorption of basic dyes from aqueous solution onto pumice powder, J. Colloid Interface Sci., 286 (2005) 455–458.
  59. M. Visa, C. Bogatu, A. Duta, Simultaneous adsorption of dyes and heavy metals from multicomponent solutions using fly ash, AppL. Surf. Sci., 256 (2010) 5486–5491.
  60. M. Doğan, M. Alkan, A. Türkyilmaz, Y. Özdemir, Kinetics and mechanism of removal of methylene blue by adsorption onto perlite, J. Hazard. Mater., 109 (2004) 141–148.
  61. M.A. Al-Ghouti, M.A. Khraisheh, M.N. Ahmad, S. Allen, Adsorption behaviour of methylene blue onto Jordanian diatomite: a kinetic study, J. Hazard. Mater., 165 (2009) 589–598.
  62. M. Moradi, M. Heydari, M. Darvishmotevalli, K. Karimyan, V.K. Gupta, Y. Vasseghian, H. Sharafi, Kinetic and modeling data on phenol removal by Iron-modified Scoria Powder (FSP) from aqueous solutions, Data Brief, 20 (2018) 957–968.
  63. I. Uzun, Kinetics of the adsorption of reactive dyes by chitosan, Dyes Pigm., 70 (2006) 76–83.
  64. K. Sharafi, M. Pirsaheb, V.K. Gupta, S. Agarwal, M. Moradi, Y. Vasseghian, E.-N. Dragoi, Phenol adsorption on scoria stone as adsorbent-Application of response surface method and artificial neural networks, J. Mol. Liq., 274 (2019) 699–714.