References

  1. A. Baran, E. Bıçak, Ş.H. Baysal, S. Önal, Comparative studies on the adsorption of Cr(VI) ions on to various sorbents, Bioresour. Technol., 98 (2007) 661–665.
  2. O. Olanipekun, A. Oyefusi, G.M. Neelgund, A. Oki, Adsorption of lead over graphite oxide, Spectrochim. Acta, Part A, 118 (2014) 857–860.
  3. A. Oehmen, R. Viegas, S. Velizarov, M.A.M. Reis, J.G. Crespo, Removal of heavy metals from drinking water supplies through the ion exchange membrane bioreactor, Desalination, 199 (2006) 405–407.
  4. P. Grimshaw, J.M. Calo, G. Hradil, Cyclic electrowinning/precipitation (CEP) system for the removal of heavy metal mixtures from aqueous solutions, Chem. Eng. J., 175 (2011) 103–109.
  5. C. Aydiner, M. Bayramoglu, S. Kara, A. Bulent Keskinler, O. Ince, Nickel removal from waters using surfactant-enhanced hybrid PAC/MF process. I. The influence of system-component variables, Ind. Eng. Chem. Res., 45 (2006) 3926–3933.
  6. R. Camarillo, Á. Pérez, P. Cañizares, A. De Lucas, Removal of heavy metal ions by polymer enhanced ultrafiltration: batch process modeling and thermodynamics of complexation reactions, Desalination, 286 (2012) 193–199.
  7. P.F. Ma, H.R. Ma, A. Galia, S. Sabatino, O. Scialdone, Reduction of oxygen to H2O2 at carbon felt cathode in undivided cells. Effect of the ratio between the anode and the cathode surfaces and of other operative parameters, Sep. Purif. Technol., 208 (2019) 116–122.
  8. Y. Gao, Q.Y. Yue, B.Y. Gao, Y.Y. Sun, W.Y. Wang, Q. Li, Y. Wang, Preparation of high surface area-activated carbon from lignin of papermaking black liquor by KOH activation for Ni(II) adsorption, Chem. Eng. J., 217 (2013) 345–353.
  9. A. Demirbas, Heavy metal adsorption onto agro-based waste materials: a review, J. Hazard. Mater., 157 (2008) 220–229.
  10. M.J.K. Ahmed, M. Ahmaruzzaman, A review on potential usage of industrial waste materials for binding heavy metal ions from aqueous solutions, J. Water Process Eng., 10 (2016) 39–47.
  11. Y.J. Xue, S.P. Wu, M. Zhou, Adsorption characterization of Cu(II) from aqueous solution onto basic oxygen furnace slag, Chem. Eng. J., 231 (2013) 355–364.
  12. H. Motz, J. Geiseler, Products of steel slags an opportunity to save natural resources, Waste Manage., 21 (2001) 285–293.
  13. N.M. Piatak, M.B. Parsons, R.R.S. Ii, Characteristics and environmental aspects of slag: a review, Appl. Geochem., 57 (2015) 236–266.
  14. K. László, P. Podkościelny, A. Dąbrowski, Heterogeneity of activated carbons with different surface chemistry in adsorption of phenol from aqueous solutions, Appl. Surf. Sci., 252 (2006) 5752–5762.
  15. D.-H. Kim, M.-C. Shin, H.-D. Choi, C.-I. Seo, K. Baek, Removal mechanisms of copper using steel-making slag: adsorption and precipitation, Desalination, 223 (2008) 283–289.
  16. J.M. Duan, B. Su, Removal characteristics of Cd(II) from acidic aqueous solution by modified steel-making slag, Chem. Eng. J., 246 (2014) 160–167.
  17. S.-Y. Liu, J. Gao, Y.-J. Yang, Y.-C. Yang, Z.-X. Ye, Adsorption intrinsic kinetics and isotherms of lead ions on steel slag, J. Hazard. Mater., 173 (2010) 558–562.
  18. C. Sarkar, J.K. Basu, A.N. Samanta, Synthesis of mesoporous geopolymeric powder from LD slag as superior adsorbent for Zinc (II) removal, Adv. Powder Technol., 29 (2018) 1142–1152.
  19. L.Y. Yang, T.T. Wen, L.P. Wang, T.H. Miki, H. Bai, X. Lu, H.F. Yu, T. Nagasaka, The stability of the compounds formed in the process of removal Pb(II), Cu(II) and Cd(II) by steelmaking slag in an acidic aqueous solution, J. Environ. Manage., 231 (2019) 41–48.
  20. J.Y. Yan, L. Moreno, I. Neretnieks, The long-term acid neutralizing capacity of steel slag, Waste Manage., 20 (2000) 217–223.
  21. J.-H. Park, Y.S. Ok, S.-H. Kim, J.-S. Cho, J.-S. Heo, R.D. Delaune, D.-C. Seo, Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions, Chemosphere, 142 (2016) 77–83.
  22. T. Liu, X. Yang, Z.L. Wang, X. Yan, Enhanced chitosan beadssupported Fe(0)-nanoparticles for removal of heavy metals from electroplating wastewater in permeable reactive barriers, Water Res., 47 (2013) 6691–6700.
  23. R. Fernández-González, M.A. Martín-Lara, I. Iáñez-Rodríguez, M. Calero, Removal of heavy metals from acid mining effluents by hydrolyzed olive cake, Probiotics Antimicrob. Proteins, 268 (2018) 169–175.
  24. L. Saria, T. Shimaoka, K. Miyawaki, Leaching of heavy metals in acid mine drainage, Waste Manage. Res., 24 (2006) 134.
  25. L. Yang, X. Ping, M. Yang, B. Hao, The characteristics of steel slag and the effect of its application as a soil additive on the removal of nitrate from aqueous solution, Environ. Sci. Pollut. Res., 24 (2016) 1–12.
  26. A.J. Hobson, D.I. Stewart, A.W. Bray, R.J.G. Mortimer, W.M. Mayes, M. Rogerson, I.T. Burke, Mechanism of vanadium leaching during surface weathering of basic oxygen furnace steel slag blocks: a microfocus X-ray absorption spectroscopy and electron microscopy study, Environ. Sci. Technol., 51 (2017) 7823–7830.
  27. N. Ortiz, M.A.F. Pires, J.C. Bressiani, Use of steel converter slag as nickel adsorber to wastewater treatment, Waste Manage., 21 (2001) 631–635.
  28. U. Kumar, M. Bandyopadhyay, Sorption of cadmium from aqueous solution using pretreated rice husk, Bioresour. Technol., 97 (2006) 104–109.
  29. S. Dai, Environmental Chemistry, 2nd ed., China Higher Education Press, 2006.
  30. Z. Zhao, Adsorption Application Mechanism, China Chemical Industry Press, 2005.
  31. Y.S. Ho, G. Mckay, Sorption of dye from aqueous solution by peat, Chem. Eng. J., 70 (1998) 115–124.
  32. I. Prigogine, Chemical Kinetics and Dynamics, Prentice-Hall, 1999.
  33. S. Ašperger, Chemical Kinetics and Reaction Mechanisms, McGraw-Hill, 1981.
  34. X.C. Chen, G.C. Chen, L.G. Chen, Y.X. Chen, J. Lehmann, M.B. Mcbride, A.G. Hay, Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution, Bioresour. Technol., 102 (2011) 8877–8884.