1. Z. Sharip, S. Suratman, A.J. Shaaban, A national research and development blueprint for sustainable lake basin management in Malaysia, Lakes Reservoirs Res. Manage., 21 (2016) 269–283.
  2. M. Nakamura, Preserving the health of the world, Environment, 39 (1997) 16–40.
  3. N.N. Rabalais, R.E. Turner, R.J. Diaz, D. Justic, Global change and eutrophication of coastal waters, ICES J. Mar. Sci., 66 (2009) 1528–1537.
  4. M.T. Kiran, M.V. Bhaskar, A. Tiwari, Phycoremediation of Eutrophic Lakes using Diatom Algae, M.N. Rashed, Lake Sciences and Climate Change, InTech Open, Croatia, 2016.
  5. E.J. Olguı́n, Phycoremediation: key issues for cost-effective nutrient removal processes, Biotechnol. Adv., 22 (2000) 81–91.
  6. J. De la Noue, G. Laliberté, D. Proulx, Algae and wastewater, J. Appl. Phycol., 4 (1992) 247–254.
  7. W.J. Oswald, H.B. Gotaas, H.F. Ludwig, V. Lynch, Algae symbiosis in oxidation ponds: II. Growth characteristics of Chlorella pyrenoidosa cultured in sewage, Sewage Ind. Wastes, 25 (1953) 26–37.
  8. G.K.S. Singh, P. Kuppan, M. Goto, N. Sugiura, M.J.M.M. Noor, Z. Ujang, Physical water quality and algal density for remediation of algal blooms in tropical shallow eutrophic reservoir, J. Novel Carbon Resour. Sci., 7 (2013) 33–41.
  9. L.B. Sukla, E. Subudhi, D. Pradhan, The Role of Microalgae in Wastewater Treatment, Springer, Singapore, 2019.
  10. V. Sivasubramanian, V.V. Subramanian, M. Muthukumaran, Bioremediation of chrome-sludge from an electroplating industry using the micro alga Desmococcus olivaceus–a pilot study, J. Algal Biomass Utln., 3 (2010) 104–128.
  11. V. Sivasubramanian, V. Subramanian, M. Muthukumaran, Phycoremediation of effluent from a soft drink manufacturing industry with a special emphasis on nutrient removal—a laboratory study, J. Algal Biomass Utln., 3 (2012) 21–29.
  12. A. Khemka, M. Saraf, Phycoremediation of dairy wastewater coupled with biomass production using Leptolyngbya sp., J. Environ. Sci. Water Res., 4 (2015) 1–8.
  13. A.D. Kshirsagar, Bioremediation of wastewater by using microalgae: an experimental study, Int. J. Life Sci. Biotechnol. Pharmacol. Res., 2 (2013) 339–346.
  14. P.R. Hanumantha, R. Ranjith Kumar, B.G. Raghavan, V.V. Subramanian, V. Sivasubramanian, Application of phycormediation technology in the treatment of wastewater from a leather-processing chemical manufacturing facility, Water SA, 37 (2011) 07–14.
  15. R. Singh, R. Birru, G. Sibi, Nutrient removal efficiencies of Chlorella vulgaris from urban wastewater for reduced eutrophication, J. Environ. Prot., 8 (2017) 1–11.
  16. F. Ahmad, A.U. Khan, A. Yasar, Comparative phycoremediation of sewage water by various species of algae, Proc. Pak. Acad. Sci., 50 (2013) 131–139.
  17. E.J. Olguı́n, S. Galicia, O. Angulo-Guerrero, E. Hernández, The effect of low light flux and nitrogen deficiency on the chemical composition of Spirulina sp. (Arthrospira) grown on digested pig waste, Bioresour. Technol., 77 (2001) 19–24.
  18. A. Ruiz-Marin, L.G. Mendoza-Espinosa, T. Stephenson, Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater, Bioresour. Technol., 101 (2010) 58–64.
  19. R.M.S. Sengar, K.K. Singh, S. Singh, Application of phycoremediation technology in the treatment of sewage water to reduce pollution load, Indian J. Sci. Res., 2 (2011) 33–36.
  20. Z. Arbib, J. Ruiz, P. Álvarez-Díaz, C. Garrido-Pérez, J.A. Perales, Capability of different microalgae species for phytoremediation processes: wastewater tertiary treatment, CO2 bio-fixation and low-cost biofuels production, Water Res., 49 (2014) 465–474.
  21. A. Hossein, P. Behdarvand, D. Kondiram, P. Gorakh, Potential use of Cyanobacteria species in phycoremediation of municipal wastewater, Int. J. Biosci., 4 (2014) 105–111.
  22. P. Gani, N. Mohamed, H. Matias-Peralta, A.A.A Latiff, Application of phycoremediation technology in the treatment of food processing wastewater by freshwater microalgae Botryococcus sp., J. Eng. Appl. Sci., 11 (2016) 7288–7292.
  23. P. Kitrungloadjanaporn, G. Sripongpun, W. Triampo, Nutrient removal from the effluent of swine slaughterhouse wastewater by Chlorella vulgaris TISTR 8580, Int. J. Adv. Agr. Environ. Eng., 4 (2017) 28–32.
  24. S.K. Gupta, A. Sriwastav, F.A. Ansari, M. Nasr, A.K. Nema, Phycoremediation: An Eco-friendly Algal Technology for Bioremediation and Bioenergy Production, K. Bauddh, B. Singh, J. Korstad, Phytoremediation Potential of Bioenergy Plants, Springer, Singapore, 2017, pp. 431–456.
  25. S.K. Gupta, F.A. Ansari, A. Shriwastav, N.K. Sahoo, I. Rawat, F. Bux, Dual role of Chlorella sorokiniana and Scenedesmus obliquus for comprehensive wastewater treatment and biomass production for biofuels, J. Cleaner Prod., 115 (2016) 255–264.
  26. M.T. Dokulil, K. Teubner, Cyanobacterial dominance in lakes, Hydrobiologia, 438 (2000) 1–12.
  27. O. Holm-Hansen, Ecology, physiology, and biochemistry of blue-green algae, Ann. Rev. Microbiol., 22 (1968) 47–70.
  28. C.S. Reynolds, R.L. Oliver, A.E. Walsby, Cyanobacterial dominance: the role of buoyancy regulation in dynamic lake environments, N. Z. J. Mar. Freshwater Res., 21 (1987) 379–390.
  29. E.G. Bellinger, D.C. Sigee, Freshwater Algae: Identification, Enumeration and Use as Bioindicators, John Wiley & Sons, Hoboken, USA, 2015.
  30. E.J. Olguín, S. Galicia, G. Mercado, T. Pérez, Annual productivity of Spirulina (Arthrospira) and nutrient removal in a pig wastewater recycling process under tropical conditions, J. Appl. Phycol., 15 (2003) 249–257.
  31. E.J. Olguin, B. Hernandez, A. Araus, R. Camacho, R. Gonzalez, M.E. Ramirez, G. Mercado, Simultaneous high-biomass protein production and nutrient removal using Spirulina maxima in sea water supplemented with anaerobic effluents, World J. Microbiol. Biotechnol., 10 (1994) 576–578.
  32. E.J. Olguin, S. Galicia, R. Camacho, G. Mercado, T.J. Pérez, Production of Spirulina sp. in sea water supplemented with anaerobic effluents in outdoor raceways under temperate climatic conditions, Appl. Microbiol. Biotechnol., 48 (1997) 242–247.
  33. A.K. Dash, M. Das, A. Pradhan, Cyanobacteria in Reducing Pollution Load from Wastewater and Laboratory Bioassay of Heavy Metals on Ecotoxicity Study: A Review, L.B. Sukla, E. Subudhi, D. Pradhan, The Role of Microalgae in Wastewater Treatment, Springer, Singapore, 2015, pp. 1–13.
  34. S.M. Phang, W.L. Chu, R. Rabiei, Phycoremediation, F. Bux, Y. Chisti, Eds., The Algae World, Springer International Publishing, Switzerland, 2015, pp. 21–40.
  35. K. Chojnacka, A. Chojnacki, H. Gorecka, Biosorption of Cr3+, Cd2+ and Cu2+ ions by blue–green algae Spirulina sp.: kinetics, equilibrium and the mechanism of the process, Chemosphere, 59 (2005) 75–84.
  36. A. Papazi, K. Kotzabasis, Bioenergetic strategy of microalgae for the biodegradation of phenolic compounds—exogenously supplied energy and carbon sources adjust the level of biodegradation, J. Biotechnol., 129 (2007) 706–716.
  37. K.B. Chekroun, E. Sánchez, M. Baghour, The role of algae in bioremediation of organic pollutants, Int. Res. J. Public Environ. Health, 1 (2014) 19–32.
  38. K. Sukačová, J. Červený, Can algal biotechnology bring effective solution for closing the phosphorus cycle? Use of algae for nutrient removal–review of past trends and future perspectives in the context of nutrient recovery, Eur. J. Environ. Sci., 7 (2017) 63–72.
  39. H.P. Jarvie, C. Neal, A. Warwick, J. White, M. Neal, H.D. Wickham, L.K. Hill, M.C. Andrews, Phosphorus uptake into algal biofilms in a lowland chalk river, Sci. Total Environ., 282 (2002) 353–73.
  40. G. Roeselers, M.C.M. Van Loosdrecht, G. Muyzer, Phototrophic biofilms and their potential applications, J. Appl. Phycol., 20 (2008) 227–235.
  41. M. Kesaano, R.C. Sims, Algal biofilm based technology for wastewater treatment, Algal Res., 5 (2014) 231–240.
  42. E. Posadas, P.A. García-Encina, A. Soltau, A. Domínguez, I. Díaz, R. Muñoz, Carbon and nutrient removal from centrates and domestic wastewater using algal–bacterial biofilm bioreactors, Bioresour. Technol., 139 (2013) 50–58.
  43. R. Sekar, K.V.K. Nair, V.N.R. Rao, V.P. Venugopalan, Nutrient dynamics and successional changes in a lentic freshwater biofilm, Freshwater Biol., 47 (2002) 1893–1907.
  44. N.C. Boelee, H. Temmink, M. Janssen, C.J.N. Buisman, R.H. Wijffels, Nitrogen and phosphorus removal from municipal wastewater effluent using microalgal biofilms, Water Res., 45 (2011) 5925–5933.
  45. M.B. Johnson, Z. Wen, Development of an attached microalgal growth system for biofuel production, Appl. Microbiol. Biotechnol., 85 (2010) 525–534.
  46. K. Sukacova, M. Trtilek, T. Rataj, Phosphorus removal using a microalgal biofilm in a new biofilm photobioreactor for tertiary wastewater treatment, Water Res., 71 (2015) 55–63.
  47. S.H. Lee, H.-M. Oh, B.H. Jo, S.A. Lee, S.Y. Shin, H.-S. Kim, S.H. Lee, C.-Y. Ahn, Higher biomass productivity of microalgae in an attached growth system, using wastewater, J. Microbiol. Biotechnol., 24 (2014) 1566–1573.
  48. P.J. Schnurr, D.G. Allen, Factors affecting algae biofilm growth and lipid production: a review, Renewable Sustainable Energy Rev., 52 (2015) 418–429.
  49. W.W. Mulbry, A.C. Wilkie, Growth of benthic freshwater algae on dairy manures, J. Appl. Phycol., 13 (2001) 301–306.
  50. W. Mulbry, S. Kondrad, C. Pizarro, E. Kebede-Westhead, Treatment of dairy manure effluent using freshwater algae: algal productivity and recovery of manure nutrients using pilot-scale algal turf scrubbers, Bioresour. Technol., 99 (2008) 8137–8142.
  51. W. Mulbry, P. Kangas, S. Kondrad, Toward scrubbing the bay: nutrient removal using small algal turf scrubbers on Chesapeake Bay tributaries, Ecol. Eng., 36 (2010) 536–541.
  52. W.H. Adey, H.D. Laughinghouse, J.B. Miller, L.-A.C. Hayek, J.G. Thompson, S. Bertman, K. Hampel, S. Puvanendran, Algal turf scrubber (ATS) floways on the Great Wicomico River, Chesapeake Bay: productivity, algal community structure, substrate and chemistry1, J. Phycol., 49 (2013) 489–501.
  53. R.J. Craggs, W.H. Adey, K.R. Jenson, M.S.S. John, F.B. Green, W.J. Oswald, Phosphorus removal from wastewater using an algal turf scrubber, Water Sci. Technol., 33 (1996) 191–198.
  54. W. Mulbry, P. Kangas, S. Kondrad, Nitrogen and phosphorus removal by the Algal Turf Scrubber at an oyster aquaculture facility, Ecol. Eng., 78 (2015) 27–32.
  55. N.E. Ray, D.E. Terlizzi, P.C. Kangas, Nitrogen and phosphorus removal by the Algal Turf Scrubber at an oyster aquaculture facility, Ecol. Eng., 78 (2015) 27-32.
  56. Y. Li, Y.-F. Chen, P. Chen, M. Min, W. Zhou, B. Martinez, J. Zhu, R. Ruan, Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production, Bioresour. Technol., 102 (2011) 5138–5144.
  57. B. Sen, M.T. Alp, F. Sonmez, M.A.T. Kocer, O. Canpolat, W. Elshorbagy, R.K. Chowdhury, Relationship of Algae to Water Pollution and Waste Water Treatment, W. Eshorbagy, R.K. Chowdhury, Water Treatment, InTech Open, Rijeka, 2013, pp. 335–354.
  58. Q. Béchet, A. Shilton, B. Guieysse, Modeling the effects of light and temperature on algae growth: state of the art and critical assessment for productivity prediction during outdoor cultivation, Biotechnol. Adv., 31 (2013) 1648–1663.
  59. J.N. Rogers, J.N. Rosenberg, B.J. Guzman, V.H. Oh, L.E. Mimbela, A. Ghassemi, M.J. Betenbaugh, G.A. Oyler, M.D. Donohue, A critical analysis of paddlewheel-driven raceway ponds for algal biofuel production at commercial scales, Algal. Res., 4 (2014) 76-88.
  60. M.H. Gerardi, Nitrification and Denitrification in the Activated Sludge Process, John Wiley & Sons, New York, 2003.
  61. M. Medina, U. Neis, Symbiotic algal bacterial wastewater treatment: effect of food to microorganism ratio and hydraulic retention time on the process performance, Water Sci. Technol., 55 (2007) 165–171.
  62. J. Garcia, R. Mujeriego, M. Hernandez-Marine, High rate algal pond operating strategies for urban wastewater nitrogen removal, J. Appl. Phycol., 12 (2000) 331–339.
  63. G. Gutzeit, D. Lorch, A. Weber, M. Engels, U. Neis, Bioflocculent algal–bacterial biomass improves low-cost wastewater treatment, Water Sci. Technol., 52 (2005) 9–18.
  64. F. Mesplé, C. Casellas, M. Troussellier, J. Bontoux, Modelling orthophosphate evolution in a high rate algal pond, Ecol. Modell., 89 (1996) 13–21.
  65. N.J. Cromar, H.J. Fallowfield, Effect of nutrient loading and retention time on performance of high rate algal ponds, J. Appl. Phycol., 9 (1997) 301–309.
  66. D.L. Sutherland, C. Howard-Williams, M.H. Turnbull, P.A. Broady, R.J. Craggs, Enhancing microalgal photosynthesis and productivity in wastewater treatment high rate algal ponds for biofuel production, Bioresour. Technol., 184 (2015) 222–229.
  67. D.L. Sutherland, M.H. Turnbull, R.J. Craggs, Increased pond depth improves algal productivity and nutrient removal in wastewater treatment high rate algal ponds, Water Res., 53 (2014) 271–281.
  68. R.J. Craggs, J. Park, S. Heubeck, D. Sutherland, High rate algal pond systems for low-energy wastewater treatment, nutrient recovery and energy production, N. Z. J. Bot., 52 (2014) 60–73.
  69. P. Gani, N.M. Sunar, H. Matias-Peralta, R.M.S.R. Mohamed, A.A.A. Latiff, U.K. Parjo Extraction of hydrocarbons from freshwater green microalgae (Botryococcus sp.) biomass after phycoremediation of domestic wastewater, Int. J. Phytorem., 19 (2017) 679–685.
  70. N. Mallick, Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review, Biometals, 15 (2002) 377–390.
  71. M.V. Jimenez-Perez, P. Sanchez-Castillo, O. Romera, D. Fernandez-Moreno, C. Pérez-Martınez, Growth and nutrient removal in free and immobilized planktonic green algae isolated from pig manure, Enzyme Microb. Technol., 34 (2004) 392–398.
  72. L.E. De-Bashan, Y. Bashan, Immobilized microalgae for removing pollutants: review of practical aspects, Bioresour. Technol., 101 (2010) 1611–1627.
  73. L.C. Rai, N. Mallick, Removal and assessment of toxicity of Cu and Fe to Anabaena doliolum and Chlorella vulgaris using free and immobilized cells, World J. Microbiol. Biotechnol., 8 (1992) 110–114.
  74. N.F.Y. Tam, Y.S. Wong, Effect of immobilized microalgal bead concentrations on wastewater nutrient removal, Environ. Pollut., 107 (2000) 145–151.
  75. L.E. De-Bashan, M. Moreno, J.P. Hernandez, Y. Bashan, Removal of ammonium and phosphorus ions from synthetic wastewater by the microalgae Chlorella vulgaris co-immobilized in alginate beads with the microalgae growth-promoting bacterium Azospirillum brasilense, Water Res., 36 (2002) 2941–2948.
  76. P.S. Lau, N.F.Y Tam, Y.S. Wong, Wastewater nutrients (N and P) removal by carrageenan and alginate immobilized Chlorella vulgaris, Environ. Technol., 18 (1997) 945–951.
  77. W.W. Carmichael, C. Drapeau, D.M. Anderson, Harvesting of Aphanizomenon flos-aquae Ralfs ex Born. & Flah. Var. flos-aquae (Cyanobacteria) from Klamath Lake for human dietary use, J. Appl. Phycol., 12 (2000) 585–595.
  78. D. Vandamme, I. Foubert, K. Muylaert, Flocculation as a low-cost method for harvesting microalgae for bulk biomass production, Trends Biotechnol., 31 (2013) 233–239.
  79. B.L. Kimmel, A.W. Groeger, Factors controlling primary production in lakes and reservoirs: a perspective, Lakes Reservoirs Res. Manage., 1 (1984) 277–281.
  80. R.E. Hecky, P. Kilham, Nutrient limitation of phytoplankton in freshwater and marine environments: a review of recent evidence on the effects of enrichment, Limnol. Oceanogr., 33 (1984) 796–822.
  81. K.I. Keating, Blue-green algal inhibition of diatom growth: transition from mesotrophic to eutrophic community structure, Science, 199 (1978) 971–973.
  82. A. Sood, N. Renuka, R. Prasanna, A.S. Ahluwalia, Cyanobacteria as Potential Options for Wastewater Treatment, A. Ansari, S. Gill, R. Gill, G. Lanza, L. Newman, Phytoremediation, Springer International Publishing, Switzerland, 2015, pp. 83–93.
  83. J.A. Downing, S.B. Watson, E. McCauley, Predicting Cyanobacteria dominance in lakes, Can. J. Fish. Aquat. Sci., 58 (2001) 1905–1908.
  84. Y. Chisti, Large-Scale Production of Algal Biomass: Raceway Ponds, F. Bux, Y. Chisti, Algae Biotechnology, Springer International Publishing, Switzerland, 2016, pp 21–40.
  85. Z. Sharip, A.T.A. Zaki, M.A.H. Shapiai, S. Suratman, A.J. Shaaban, Lakes of Malaysia: water quality, eutrophication and management, Lakes Reservoirs Res. Manage., 19 (2014) 130–141.
  86. G. Abdul Qader, L. Barsanti, M.R. Tredici, Harvest of Arthrospira platensis from Lake Kossorom (Chad) and its household usage among the Kanembu, J. Appl. Phycol., 12 (2000) 493–498.
  87. M.T. Kiran, N.R. Parine, A. Tiwari, Potential of diatom consortium developed by nutrient enrichment for biodiesel production and simultaneous nutrient removal from wastewater, Saudi J. Biol. Sci., 25 (2018) 704–709.
  88. L. Wang, M. Min, Y. Li, P. Chen, Y. Chen, Y. Liu, R. Ruan, Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant, Appl. Biochem. Biotechnol., 162 (2010) 1174–1186.
  89. G.G. Ganf, R.L. Oliver, Vertical separation of light and available nutrients as a factor causing replacement of green algae by blue-green algae in the plankton of a stratified lake, J. Ecol., 70 (1982) 829–844.
  90. J. Garcia, B.F. Green, T. Lundquist, R. Mujeriego, M. Hernandez-Marine, W.J. Oswald, Long term diurnal variations in contaminant removal in high rate ponds treating urban wastewater, Bioresour. Technol., 97 (2006) 1709–1715.
  91. V. Montemezzani, I.C. Duggan, I.D. Hogg, R.J. Craggs, Control of zooplankton populations in a wastewater treatment high rate algal pond using overnight CO2 asphyxiation, Algal Res., 26 (2017) 250–264.
  92. A. Mehrabadi, M.M. Farid, R. Craggs, Effect of CO2 addition on biomass energy yield in wastewater treatment high rate algal mesocosms, Algal Res., 22 (2017) 93–103.
  93. M. Hanifzadeh, M.-H. Sarrafzadeh, Z. Nabati, O. Tavakoli, H. Feyzizarnagh, The technical, economic and energy assessment of an alternative strategy for mass production of biomass and lipid from microalgae, J. Environ. Chem. Eng., 6 (2018) 866–873.