1. A.M. Gall, B.J. Marinas, Y. Lu, J.L. Shisler, Waterborne viruses: a barrier to safe drinking water, PLoS Pathog., 11 (2015) e1004867.
  2. C.L. Abberton, L. Bereschenko, P.W. van der Wielen, C.J. Smith, Survival, biofilm formation, and growth potential of environmental and enteric Escherichia coli strains in drinking water microcosms, Appl. Environ. Microbiol., 82 (2016) 5320–5331.
  3. H.Y. Chen, Y.Y. Zhang, L.L. Ma, F.M. Liu, W.W. Zheng, Q.F. Shen, H.M. Zhang, X. Wei, D.J. Tian, G.S. He, W.D. Qu, Change of water consumption and its potential influential factors in Shanghai: a cross-sectional study, BMC Public Health, 12 (2012) 450, doi: 10.1186/1471-2458-12-450.
  4. L. Wang, L. Zhang, J. Lv, Y. Zhang, B. Ye, Public awareness of drinking water safety and contamination accidents: a case study in Hainan Province, China, Water, 10 (2018) 446.
  5. United States Centers for Disease Control and Prevention (CDC), Traveler’s Health, 2019, Available at: (Accessed in September 2019).
  6. Korea-Herald, Drink Tap Water? ‘No Way,’ Say Koreans, 2015. Available at: (Accessed in September 2019).
  7. Korean Statistical Information Service, Drinking Water Treatment Facility Status, 2017. Available at: (Accessed in September 2019).
  8. C.J. Volk, M.W. LeChevallier, Assessing biodegradable organic matter, J. AWWA, 92 (2000) 64–76.
  9. C.C. Chien, C.M. Kao, C.D. Dong, T.Y. Chen, J.Y. Chen, Effectiveness of AOC removal by advanced water treatment systems: a case study, Desalination, 202 (2007) 318–325.
  10. J.H.M. van Lieverloo, W. Hoogenboezem, G. Veenendaal, D. van der Kooij, Variability of invertebrate abundance in drinking water distribution systems in the Netherlands in relation to biostability and sediment volumes, Water Res., 46 (2012) 4918–4932.
  11. E.I. Prest, F. Hammes, M.C.M. van Loosdrecht, J.S. Vrouwenvelder, Biological stability of drinking water: controlling factors, methods, and challenges, Front. Microbiol., 7 (2016), doi: 10.3389/fmicb.2016.00045.
  12. W.A.M. Hijnen, R. Schurer, J.A. Bahlman, H.A.M. Ketelaars, R. Italiaander, A. van der Wal, P. van der Wielen, Slowly biodegradable organic compounds impact the biostability of non-chlorinated drinking water produced from surface water, Water Res., 129 (2018) 240–251.
  13. M.J. Lehtola, I.T. Miettinen, T. Vartiainen, P.J. Martikainen, Changes in content of microbially available phosphorus, assimilable organic carbon and microbial growth potential during drinking water treatment processes, Water Res., 36 (2002) 3681–3690.
  14. I.C. Escobar, A.A. Randall, Assimilable organic carbon (AOC) and biodegradable dissolved organic carbon (BDOC): complementary measurements, Water Res., 35 (2001) 4444–4454.
  15. M. Vital, D. Stucki, T. Egli, F. Hammes, Evaluating the growth potential of pathogenic bacteria in water, Appl. Environ. Microbiol., 76 (2010) 6477–6484.
  16. P.W.M.H. Smeets, G.J. Medema, J.C. van Dijk, The Dutch secret: how to provide safe drinking water without chlorine in the Netherlands, Drink. Water Eng. Sci., 2 (2009) 1–14.
  17. M. Polanska, K. Huysman, C. van Keer, Investigation of assimilable organic carbon (AOC) in flemish drinking water, Water Res., 39 (2005) 2259–2266.
  18. D. van der Kooij, G.L. Bakker, R. Italiaander, H.R. Veenendaal, B.A. Wullings, Biofilm composition and threshold concentration for growth of Legionella pneumophila on surfaces exposed to flowing warm tap water without disinfectant, Appl. Environ. Microbiol., 83 (2017), doi: 10.1128/AEM.02737-16.
  19. R. Schurer, J.C. Schippers, M.D. Kennedy, E.R. Cornelissen, S.G. Salinas-Rodriguez, W.A.M. Hijnen, A. van der Wal, Enhancing biological stability of disinfectant-free drinking water by reducing high molecular weight organic compounds with ultrafiltration posttreatment, Water Res., 164 (2019) 114927.
  20. J.W. Park, H.C. Kim, A.S. Meyer, S. Kim, S.K. Maeng, Influences of NOM composition and bacteriological characteristics on biological stability in a full-scale drinking water treatment plant, Chemosphere, 160 (2016) 189–198.
  21. J.W. Park, Y.J. Lee, A.S. Meyer, I. Douterelo, S.K. Maeng, Bacterial growth through microfiltration membranes and NOM characteristics in an MF-RO integrated membrane system: lab-scale and full-scale studies, Water Res., 144 (2018) 36–45.
  22. G. Liu, Y. Zhang, W.J. Knibbe, C.J. Feng, W.S. Liu, G. Medema, W. van der Meer, Potential impacts of changing supply-water quality on drinking water distribution: a review, Water Res., 116 (2017) 135–148.
  23. I. Douterelo, R.L. Sharpe, J.B. Boxall, Influence of hydraulic regimes on bacterial community structure and composition in an experimental drinking water distribution system, Water Res., 47 (2013) 503–516.
  24. K. Lautenschlager, N. Boon, Y. Wang, T. Egli, F. Hammes, Overnight stagnation of drinking water in household taps induces microbial growth and changes in community composition, Water Res., 44 (2010) 4868–4877.
  25. L. Zlatanovic, A. Knezev, J.P. van der Hoek, J.H.G. Vreeburg, Influence of an extended domestic drinking water system on the drinking water quality, Water, 10 (2018), doi: 10.3390/w10050582.
  26. G. Wen, S. Kotzsch, M. Vital, T. Egli, J. Ma, BioMig—a method to evaluate the potential release of compounds from and the formation of biofilms on polymeric materials in contact with drinking water, Environ. Sci. Technol., 49 (2015) 11659–11669.
  27. W. Liu, H. Wu, Z. Wang, S.L. Ong, J.Y. Hu, W.J. Ng, Investigation of assimilable organic carbon (AOC) and bacterial regrowth in drinking water distribution system, Water Res., 36 (2002) 891–898.
  28. W.Y. Li, J.P. Zhang, F. Wang, L. Qian, Y.Y. Zhou, W.Q. Qi, J.P. Chen, Effect of disinfectant residual on the interaction between bacterial growth and assimilable organic carbon in a drinking water distribution system, Chemosphere, 202 (2018) 586–597.
  29. J.W. Park, K.Y. Park, Y. Na, S. Park, S. Kim, J.H. Kweon, S.K. Maeng, Evaluation of organic migration and biomass formation on polymeric components in a point-of-use water dispenser, Water Res., 165 (2019) 115025.
  30. E.L. Sack, P.W. van der Wielen, D. van der Kooij, Polysaccharides and proteins added to flowing drinking water at microgramper- liter levels promote the formation of biofilms predominated by bacteroidetes and proteobacteria, Appl. Environ. Microbiol., 80 (2014) 2360–2371.
  31. S.A. Huber, A. Balz, M. Abert, W. Pronk, Characterisation of aquatic humic and non-humic matter with size-exclusion chromatography - organic carbon detection - organic nitrogen detection (LC-OCD-OND), Water Res., 45 (2011) 879–885.
  32. F.A. Hammes, T. Egli, New method for assimilable organic carbon determination using flow-cytometric enumeration and a natural microbial consortium as inoculum, Environ. Sci. Technol., 39 (2005) 3289–3294.
  33. I.T. Miettinen, T. Vartiainen, P.J. Martikainen, Determination of assimilable organic carbon in humus-rich drinking waters, Water Res., 33 (1999) 2277–2282.
  34. C.J. Volk, M.W. Lechevallier, Effects of conventional treatment on AOC and BDOC levels, J. AWWA, 94 (2002) 112–123.
  35. F. Hammes, S. Meylan, E. Salhi, O. Koster, T. Egli, U. von Gunten, Formation of assimilable organic carbon (AOC) and specific natural organic matter (NOM) fractions during ozonation of phytoplankton, Water Res., 41 (2007) 1447–1454.
  36. B.M. Yang, J.K. Liu, C.C. Chien, R.Y. Surampalli, C.M. Kao, Variations in AOC and microbial diversity in an advanced water treatment plant, J. Hydrol., 409 (2011) 225–235.
  37. Y. Ohkouchi, B.T. Ly, S. Ishikawa, Y. Aoki, S. Echigo, S. Itoh, A survey on levels and seasonal changes of assimilable organic carbon (AOC) and its precursors in drinking water, Environ. Technol., 32 (2011) 1605–1613.
  38. Y. Choi, H. Park, M. Lee, G.-S. Lee, Y.-j. Choi, Seasonal variation of assimilable organic carbon and its impact to the biostability of drinking water, Environ. Eng. Res., 24 (2019) 501–512.
  39. A.K. Camper, Involvement of humic substances in regrowth, Int. J. Food Microbiol., 92 (2004) 355–364.
  40. K.Y. Choi, B.A. Dempsey, In-line coagulation with low-pressure membrane filtration, Water Res., 38 (2004) 4271–4281.
  41. A. Nescerecka, T. Juhna, F. Hammes, Identifying the underlying causes of biological instability in a full-scale drinking water supply system, Water Res., 135 (2018) 11–21.