1. L.F. Greenlee, D.F. Lawler, B.D. Freeman, B. Marrot, P. Moulin, Reverse osmosis desalination: water sources, technology, and today’s challenges, Water Res., 43 (2009) 2317–2348.
  2. M. Qasim, M. Badrelzaman, N.N. Darwish, N.A. Darwish, N. Hilal, Reverse osmosis desalination: a state-of-the-art review, Desalination, 459 (2019) 59–104.
  3. J.R. Werber, A. Deshmukh, M. Elimelech, The critical need for increased selectivity, not increased water permeability, for desalination membranes, Environ. Sci. Technol. Lett., 3 (2016) 112–120.
  4. J.R. Werber, C.O. Osuji, M. Elimelech, Materials for nextgeneration desalination and water purification membranes, Nat. Rev. Mater., 1 (2016) 16018.
  5. G.M. Geise, H.B. Park, A.C. Sagle, B.D. Freeman, J.E. McGrath, Water permeability and water/salt selectivity tradeoff in polymers for desalination, J. Membr. Sci., 369 (2011) 130–138.
  6. Y. Du, L. Xie, Y. Liu, S. Zhang, Y. Xu, Optimization of reverse osmosis networks with split partial second pass design, Desalination, 365 (2015) 365–380.
  7. Y.-Y. Lu, Y.-D. Hu, X.-L. Zhang, L.-Y. Wu, Q.-Z. Liu, Optimum design of reverse osmosis system under different feed concentration and product specification, J. Membr. Sci., 287 (2007) 219–229.
  8. M.G. Marcovecchio, P.A. Aguirre, N.J. Scenna, Global optimal design of reverse osmosis networks for seawater desalination: modeling and algorithm, Desalination, 184 (2005) 259–271.
  9. K. Jeong, M. Park, T.H. Chong, Numerical model-based analysis of energy-efficient reverse osmosis (EERO) process: performance simulation and optimization, Desalination, 453 (2019) 10–21.
  10. Y.-Y. Lu, Y.-D. Hu, D.-M. Xu, L.-Y. Wu, Optimum design of reverse osmosis seawater desalination system considering membrane cleaning and replacing, J. Membr. Sci., 282 (2006) 7–13.
  11. A. Jiang, H. Wang, Y. Lin, W. Cheng, J. Wang, A study on optimal schedule of membrane cleaning and replacement for spiral-wound SWRO system, Desalination, 404 (2017) 259–269.
  12. K.M. Sassi, I.M. Mujtaba, Effective design of reverse osmosis based desalination process considering wide range of salinity and seawater temperature, Desalination, 306 (2012) 8–16.
  13. K.M. Sassi, I.M. Mujtaba, Optimal operation of RO system with daily variation of freshwater demand and seawater temperature, Comp. Chem. Eng., 59 (2013) 101–110.
  14. S.J. Kim, Y.G. Lee, K.H. Cho, Y.M. Kim, S. Choi, I.S. Kim, D.R. Yang, J.H. Kim, Site-specific raw seawater quality impact study on SWRO process for optimizing operation of the pressurized step, Desalination, 238 (2009) 140–157.
  15. V.G. Molina, M. Busch, P. Sehn, Cost savings by novel seawater reverse osmosis elements and design concepts, Desal. Wat. Treat., 7 (2009) 160–177.
  16. B. Peñate, L. García-Rodríguez, Reverse osmosis hybrid membrane inter-stage design: a comparative performance assessment, Desalination, 281 (2011) 354–363.
  17. K. Jeong, M. Park, S.J. Ki, J.H. Kim, A systematic optimization of internally staged design (ISD) for a full-scale reverse osmosis process, J. Membr. Sci., 540 (2017) 285–296.
  18. J. Kim, S. Hong, Optimizing seawater reverse osmosis with internally staged design to improve product water quality and energy efficiency, J. Membr. Sci., 568 (2018) 76–86.
  19. M. Soltanieh, W.N. Gill, Review of reverse osmosis membranes and transport models, Chem. Eng. Commun., 12 (1981) 279–363.
  20. Y.G. Lee, Y.S. Lee, D.Y. Kim, M. Park, D.R. Yang, J.H. Kim, A fouling model for simulating long-term performance of SWRO desalination process, J. Membr. Sci., 401–402 (2012) 282–291.
  21. Y.G. Lee, D.Y. Kim, Y.C. Kim, Y.S. Lee, D.H. Jung, M. Park, S.-J. Park, S. Lee, D.R. Yang, J.H. Kim, A rapid performance diagnosis of seawater reverse osmosis membranes: simulation approach, Desal. Wat. Treat., 15 (2010) 11–19.
  22. C.J. Seeton, Viscosity–temperature correlation for liquids, Tribol. Lett., 22 (2006) 67–78.
  23. W. Zhou, L. Song, T.K. Guan, A numerical study on concentration polarization and system performance of spiral wound RO membrane modules, J. Membr. Sci., 271 (2006) 38–46.
  24. K.L. Chen, L. Song, S.L. Ong, W.J. Ng, The development of membrane fouling in full-scale RO processes, J. Membr. Sci., 232 (2004) 63–72.
  25. T.H. Chong, F.S. Wong, A.G. Fane, Implications of critical flux and cake enhanced osmotic pressure (CEOP) on colloidal fouling in reverse osmosis: Experimental observations, J. Membr. Sci., 314 (2008) 101–111.
  26. M. Park, J. Lee, C. Boo, S. Hong, S.A. Snyder, J.H. Kim, Modeling of colloidal fouling in forward osmosis membrane: effects of reverse draw solution permeation, Desalination, 314 (2013) 115–123.
  27. E.M.V. Hoek, M. Elimelech, Cake-enhanced concentration polarization: a new fouling mechanism for salt-rejecting membranes, Environ. Sci. Technol., 37 (2003) 5581–5588.
  28. G. Schock, A. Miquel, Mass transfer and pressure loss in spiral wound modules, Desalination, 64 (1987) 339–352.
  29. A. Ghobeity, A. Mitsos, Optimal time-dependent operation of seawater reverse osmosis, Desalination, 263 (2010) 76–88.