1. J. Liu, G. Liu, W. Liu, Preparation of water-soluble β-cyclodextrin/poly(acrylic acid)/graphene oxide nanocomposites as new adsorbents to remove cationic dyes from aqueous solutions, Chem. Eng. J., 257 (2014) 299–308.
  2. M. Fan, J. Hu, R. Cao, W. Ruan, X. Wei, A review on experimental design for pollutants removal in water treatment with the aid of artificial intelligence, Chemosphere, 200 (2018) 330–339.
  3. L. Hu, Fabrication of hyperbranched polyamine functionalized graphene for high-efficiency removal of Pb(II) and methylene blue, Chem. Eng. J., 287 (2016) 545–556.
  4. F. Wang, L. Zhang, Y. Wang, X. Liu, S. Rohani, J. Lu, Fe3O4@SiO2@ CS-TETA functionalized graphene oxide for the adsorption of methylene blue (MB) and Cu(II), Appl. Surf. Sci., 23 (2017) 420–431.
  5. V.M. Esquerdo, C.T. Jr, G.L. Dotto, L.A. Pinto, Chitosan scaffold as an alternative adsorbent for the removal of hazardous food dyes from aqueous solutions, J. Colloid Interface Sci., 424 (2014) 7–15.
  6. Z. Geng, Highly efficient dye adsorption and removal: a functional hybrid of reduced graphene oxide–Fe3O4 nanoparticles as an easily regenerative adsorbent, J. Mater. Chem., 22 (2012) 3527–3535.
  7. Y. Huang, J. Tang, L. Gai, Y. Gong, H. Guan, R. He, H. Lyu, Different approaches for preparing a novel thiol-functionalized graphene oxide/Fe-Mn and its application for aqueous methylmercury removal, Chem. Eng. J., 319 (2017) 229–239.
  8. M. Liu, T. Wen, X. Wu, C. Chen, J. Hu, J. Li, X. Wang, Synthesis of porous Fe3O4 hollow microspheres/graphene oxide composite for Cr(VI) removal, Dalton Trans., 42 (2013) 14710.
  9. R.X. Liu, R.J. Tan, B. Li, Y.H. Song, B. Zeng, Z.S. Li, Overview of POPs and heavy metals in Liao River Basin, Environ. Earth Sci., 73 (2015) 5007–5017.
  10. A. Demir, A. Gunay, E. Debik, Ammonium removal from aqueous solution by ion-exchange using packed bed natural zeolite, Water SA, 28 (2002) 329–335.
  11. Y. Masue, R.H. Loeppert, T.A. Kramer, Arsenate and arsenite adsorption and desorption behavior on coprecipitated aluminum: iron hydroxides, Environ. Sci. Technol., 41 (2007) 837–42.
  12. R.C. Cheng, S. Liang, H.C. Wang, M.D. Beuhler, Enhanced coagulation for arsenic removal, J. Am. Water Works Assoc., 86 (1994) 79–90.
  13. Y. Yoon, Y. Hwang, M. Ji, B. Jeon, J. Kang, Ozone/membrane hybrid process for arsenic removal in iron-containing water, Desal. Wat. Treat., 31 (2011) 138–143.
  14. P. Brandhuber, G. Amy, Arsenic removal by a charged ultrafiltration membrane-influences of membrane operating conditions and water quality on arsenic rejection, Desalination, 140 (2001) 1–14.
  15. A.I. Alonso, A.M. Urtiaga, S. Zamacona, A. Irabien, I. Ortiz, Kinetic modelling of cadmium removal from phosphoric acid by non-dispersive solvent extraction, J. Membr. Sci., 130 (1997) 193–203.
  16. H. Polat, D. Erdogan, Heavy metal removal from waste waters by ion flotation, J. Hazard. Mater., 148 (2007) 267–273.
  17. J. Ma, W. Liu, Effectiveness and mechanism of potassium ferrate (VI) preoxidation for algae removal by coagulation, Water Res., 36 (2002) 871–878.
  18. P. Gao, X. Chen, F. Shen, G. Chen, Removal of chromium(VI) from wastewater by combined electrocoagulation–electroflotation without a filter, Sep. Purif. Technol., 43 (2005) 117–123.
  19. C.T. Wang, W.L. Chou, Y.M. Kuo, Removal of COD from laundry wastewater by electrocoagulation/electroflotation, J. Hazard. Mater., 164 (2009) 81–86.
  20. A.L. Dolo, S. Goel, Effect of electrode combinations, pH and current density on arsenic removal from drinking water using electrocoagulation, J. Inst. Eng. Environ. Eng. Div., 25 (2010) 21–25.
  21. D.Q. Tran, H.T. Pham, H.Q. Do, Efficient removal of uranium from aqueous solution by reduced graphene oxide–Zn0.5Ni0.5Fe2O4 ferrite–polyaniline nanocomposite, J. Electron. Mater., 46 (2017) 3273–3278.
  22. W. Qi, Y. Zhao, X. Zheng, M. Ji, Z. Zhang, Adsorption behavior and mechanism of Cr(VI) using Sakura waste from aqueous solution, Appl. Surf. Sci., 360 (2016) 470–476.
  23. Y. Chen, H. Xu, S. Wang, L. Kang, Removal of Cr(VI) from water using polypyrrole/attapulgite core-shell nanocomposites: equilibrium, thermodynamics and kinetics, RSC Adv., 4 (2014) 17805–17811.
  24. Y. Zhao, D. Zhao, C. Chen, X. Wang, Enhanced photo-reduction and removal of Cr(VI) on reduced graphene oxide decorated with TiO2 nanoparticles, J. Colloid Interface Sci., 405 (2013) 211–217.
  25. N. Kannan, M.M. Sundaram, Kinetics and mechanism of removal of methylene blue by adsorption on various carbons-a comparative study, Dyes Pigm., 51 (2001) 25–40.
  26. M. Doğan, M. Alkan, A. Türkyilmaz, Y. Ozdemir, Kinetics and mechanism of removal of methylene blue by adsorption onto perlite, J. Hazard. Mater., 109 (2004) 141–148.
  27. J. Aguado, J.M. Arsuaga, A. Arencibia, M. Lindo, V. Gascón, Aqueous heavy metals removal by adsorption on aminefunctionalized mesoporous silica, J. Hazard. Mater., 163 (2009) 213–221.
  28. R.L. Johnson, Field-scale transport and transformation of carboxymethylcellulose-stabilized nano zero-valent iron, Environ. Sci. Technol., 47 (2013) 1573–1580.
  29. J. Li, C. Chen, K. Zhu, X. Wang, Nanoscale zero-valent iron particles modified on reduced graphene oxides using a plasma technique for Cd(II) removal, J. Taiwan Inst. Chem. Eng., 59 (2016) 389–394.
  30. M.A. Gondal, A. Hameed, Z.H. Yamani, A. Suwaiyan, Production of hydrogen and oxygen by water splitting using laser induced photo-catalysis over Fe2O3, Appl. Catal. A, 268 (2004) 159–167.
  31. S. Guo, G. Zhang, Y. Guo, J.C. Yu, Graphene oxide–Fe2O3 hybrid material as highly efficient heterogeneous catalyst for degradation of organic contaminants, Carbon, 60 (2013) 437–444.
  32. X.S. Lv, Y. Qiu, Z.Y. Wang, G.M. Jiang, Y.T. Chen, X.H. Xu, R.H. Hurt, Aerosol synthesis of phase-controlled iron-graphene nanohybrids through FeOOH nanorod intermediates, Environ. Sci: Nano, 3 (2016) 1215–1221.
  33. J. Huang, Q. Chang, Y. Ding, X. Han, H. Tang, Catalytic oxidative removal of 2,4-dichlorophenol by simultaneous use of horseradish peroxidase and graphene oxide/Fe3O4 as catalyst, Chem. Eng. J., 254 (2014) 434–442.
  34. Q. Chang, J. Huang, Y. Ding, H. Tang, Catalytic oxidation of phenol and 2,4-dichlorophenol by using horseradish peroxidase immobilized on graphene oxide/Fe3O4, Molecules, 21 (2016) 1044–1050.
  35. J. Cao, Q. Liu, J. Du, L. Yang, M. Wei, M. Gao, J. Yang, Facile onestep hydrothermal method to fabricate Fe3O4 quantum dots–graphene nanocomposites for extraction of dye from aqueous solution, J. Mater. Sci. Mater. Electron., 28 (2016) 2267–2271.
  36. J.W. Su, Y.X. Zhang, S.C. Xu, S. Wang, H.L. Ding, S.S. Pan, G.Z. Wang, G.H. Li, H.J. Zhao, Highly efficient and recyclable triple-shelled Ag@Fe3O4@SiO2@TiO2 photocatalysts for degradation of organic pollutants and reduction of hexavalent chromium ions, Nanoscale, 6 (2014) 5181–5192.
  37. H. Xu, Synthesis and super capacitance of goethite/reduced graphene oxide for supercapacitors, Mater. Chem. Phys., 141 (2013) 310–317.
  38. Q. Zhou, Y. Lin, J. Shu, K. Zhang, Z. Yu, D. Tang, Reduced graphene oxide-functionalized FeOOH for signal-on photoelectrochemical sensing of prostate-specific antigen with bioresponsive controlled release system, Biosens. Bioelectron., 98 (2017) 15–21.
  39. G. Huang, C. Zhang, Y. Long, J. Wynn, Y. Liu, W. Wang, J. Gao, Low temperature preparation of α-FeOOH/reduced graphene oxide and its catalytic activity for the photodegradation of an organic dye, Nanotechnology, 24 (2013) 395601–395601.
  40. P. Laokul, V. Amornkitbamrung, S. Seraphin, S. Maensiri, Characterization and magnetic properties of nanocrystalline CuFeO, NiFeO, ZnFeO powders prepared by the Aloe vera extract solution, Curr. Appl. Phys., 11 (2011) 101–108.
  41. F. Deng, X. Lu, X. Pei, X. Luo, S. Luo, D.D. Dionysiou, Fabrication of ternary reduced graphene oxide/SnS2/ZnFe2O4 composite for high visible-light photocatalytic activity and stability, J. Hazard. Mater., 332 (2017) 149–161.
  42. B. Zhang, J. Zhang, F. Chen, Preparation and characterization of magnetic TiO2/ZnFe2O4 photocatalysts by a sol–gel method, Res. Chem. Intermed., 34 (2008) 375–380.
  43. S. Sindhu, A. Narayanasamy, On the magnetic properties of ultra-fine zinc ferrites, J. Magn. Magn. Mater., 189 (1998) 83–88.
  44. B.K. Kang, Efficient removal of arsenic by strategically designed and layer-by-layer assembled PS@+rGO@GO@Fe3O4 composites, J. Environ. Manage., 201 (2017) 286–293.
  45. Z.J. Li, L. Wang, L.Y. Yuan, C.L. Xiao, L. Mei, L.R. Zheng, J. Zhang, J.H. Yang, Y.L. Zhao, Z.T. Zhu, Z.F. Chai, W.Q. Shi, Efficient removal of uranium from aqueous solution by zerovalent iron nanoparticle and its graphene composite, J. Hazard. Mater., 290 (2015) 26–33.
  46. W. Feng, P. Long, Y. Feng, Y. Li, Two-dimensional fluorinated graphene: synthesis, structures, properties and applications, Adv. Sci., 3 (2016) 1–22.
  47. H. Zhang, X. Lv, Y. Li, Y. Wang, J. Li, P25-graphene composite as a high performance photocatalyst, ACS Nano, 4 (2010) 380–386.
  48. S.V. Morozov, K.S. Novoselov, M.I. Katsnelson, F. Schedin, L.A. Ponomarenko, D. Jiang, A.K. Geim, Strong suppression of weak localization in graphene, Phys. Rev. Lett., 97 (2006) 016801–016804.
  49. E.H. Hwang, S. Adam, S.D. Sarma, Transport in chemically doped graphene in the presence of adsorbed molecules, Phys. Rev. B, 76 (2007) 195421–195429.
  50. M. Ishigami, J.H. Chen, W.G. Cullen, M.S. Fuhrer, E.D. Williams, Atomic Structure of Graphene on SiO2, Nano Lett., 7 (2007) 1643–1648.
  51. F. Schedin, K.S. Novoselov, S.V. Morozov, D. Jiang, E.H. Hill, P. Blake, A.K. Geim, Detection of individual gas molecules by graphene sensors, Nat. Mater., 6 (2006) 652–655.
  52. T.O. Wehling, A.V. Balatsky, M.I. Katsnelson, A.I. Lichtenstein, K. Scharnberg, R. Wiesendanger, Local electronic signatures of impurity states in graphene, Phys. Rev. B, 75 (2007) 125421–125425.
  53. Y. Niimi, T. Matsui, H. Kambara, K. Tagami, M. Tsukada, H. Fukuyama, Scanning tunneling microscopy and spectroscopy of the electronic local density of states of graphite surfaces near monoatomic step edges, Phys. Rev. B, 73 (2006) 085421–0854218.
  54. M. Liang, B. Luo, L. Zhi, Application of graphene and graphenebased materials in clean energy-related devices, Int. J. Energy Res., 33 (2010) 1161–1170.
  55. S. Wang, H. Sun, H.M. Ang, M.O. Tadé, Adsorptive remediation of environmental pollutants using novel graphene-based nanomaterials, Chem. Eng. J., 226 (2013) 336–347.
  56. O.C. Compton, S.B.T. Nguyen, Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials, Small, 6 (2010) 711–720.
  57. A. Kumar, L. Rout, L.S.K. Achary, S.K. Mohanty, P. Dash, A combustion synthesis route for magnetically separable graphene oxide–CuFe2O4–ZnO nanocomposites with enhanced solar light-mediated photocatalytic activity, New J. Chem., 41 (2017) 2–19.
  58. L. Zhuo, Y. Wu, L. Wang, J. Ming, Y. Yu, X. Zhang, F. Zhao, CO2–expanded ethanol chemical synthesis of a Fe3O4@graphene composite and its good electrochemical properties as anode material for Li-ion batteries, J. Mater. Chem., 1 (2013) 3954–3960.
  59. S. Hashemian, M. Rahimi, A.A. Kerdegari, CuFeO@graphene nanocomposite as a sorbent for removal of alizarine yellow azo dye from aqueous solutions, Desal. Wat. Treat., 57 (2015) 1–12.
  60. J. Manokaran, Equilibrium, kinetic and thermodynamic studies for the removal of Zn(II) and Ni(II) ions using magnetically recoverable graphene/FeO composite, Desal. Wat. Treat., 56 (2015) 2485–2501.
  61. S. Vadahanambi, S.H. Lee, W.J. Kim, I.K. Oh, Arsenic removal from contaminated water using three-dimensional graphenecarbon nanotube-iron oxide nanostructures, Environ. Sci. Technol., 47 (2013) 10510–10517.
  62. C.M. Babu, R. Vinodh, B. Sundaravel, A. Abidov, M.P. Mei, S.C. Wang, H.T. Jang, Characterization of reduced graphene oxide supported mesoporous Fe2O3/TiO2 nanoparticles and adsorption of As(III) and As(V) from potable water, J. Taiwan Inst. Chem. Eng., 62 (2016) 199–208.
  63. D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide, Chem. Soc. Rev., 39 (2009) 228–240.
  64. W. Gao, M. Majumder, L.B. Alemany, T.N. Narayanan, M.A. Ibarra, B.K. Pradhan, P.M. Ajayan, Engineered graphite oxide materials for application in water purification, ACS Appl. Mater. Interface, 3 (2011) 1821–1830.
  65. R. Mukherjee, P. Bhunia, S. De, Impact of graphene oxide on removal of heavy metals using mixed matrix membrane, Chem. Eng. J., 292 (2016) 284–297.
  66. Y. Bian, Z.Y. Bian, J.X. Zhang, A.Z. Ding, S.L. Liu, H. Wang, Effect of the oxygen-containing functional group of graphene oxide on the aqueous cadmium ions removal, Appl. Surf. Sci., 329 (2015) 269–275.
  67. B. Huang, Effect of Cu(II) ions on the enhancement of tetracycline adsorption by Fe3O4@SiO2-chitosan/graphene oxide nanocomposite, Carbohydr. Polym., 157 (2017) 576–585.
  68. S. Yang, C. Chen, Y. Chen, J. Li, D. Wang, X. Wang, W. Hu, Competitive adsorption of Pb(II), Ni(II), and Sr(II) ions on graphene oxides: a combined experimental and theoretical study, Chempluschem, 80 (2015) 480–484.
  69. J. Xu, L. Wang, Y. Zhu, Decontamination of bisphenol a from aqueous solution by graphene adsorption, Langmuir, 28 (2012) 8418–8423.
  70. M. Machida, T. Mochimaru, H. Tatsumoto, Lead(II) adsorption onto the graphene layer of carbonaceous materials in aqueous solution, Carbon, 44 (2006) 2681–2688.
  71. Q. Chang, G. Jiang, H. Tang, N. Li, J. Huang, L. Wu, Enzymatic removal of chlorophenols using horseradish peroxidase immobilized on superparamagnetic Fe3O4/graphene oxide nanocomposite, Chin. J. Catal., 36 (2015) 961–968.
  72. G. Jiang, TiO2 nanoparticles assembled on graphene oxide nanosheets with high photocatalytic activity for removal of pollutants, Carbon, 49 (2011) 2693–2701.
  73. X. Yang, C. Chen, J. Li, G. Zhao, X. Ren, X. Wang, Graphene oxide-iron oxide and reduced graphene oxide-iron oxide hybrid materials for the removal of organic and inorganic pollutants, RSC Adv., 2 (2012) 8821–8826.
  74. S. Prakash, S. Mishra, Graphene-Fe3O4-TiO2 ternary composite: an efficient visible light catalyst for the removal of organic pollutants, Neuropsychologia, 64 (2014) 124–133.
  75. L.M. Viculis, J.J. Mack, O.M. Mayer, H.T. Hahn, R. Kaner, Intercalation and exfoliation routes to graphite nanoplatelets, J. Mater. Chem., 15 (2005) 974–978.
  76. W. Choi, I. Lahiri, R. Seelaboyina, Y.S. Kang, Synthesis of graphene and its applications: a review, Crit. Rev. Solid State Mater. Sci., 35 (2010) 52–71.
  77. L.M. Viculis, J.J. Mack, R.B. Kaner, A chemical route to carbon nanoscrolls, Science, 299 (2003) 1361–1369.
  78. P.R. Somani, S.P. Somani, M. Umeno, Planer nano-graphenes from camphor by CVD, Chem. Phys. Lett., 430 (2006) 56–59.
  79. A.N. Obraztsov, E.A. Obraztsova, A.V. Tyurnina, A.A. Zolotukhin, Chemical vapor deposition of thin graphite films of nanometer thickness, Carbon, 45 (2007) 2017–2021.
  80. W. Zhao, M. Fang, F. Wu, H. Wu, L. Wang, G. Chen, Preparation of graphene by exfoliation of graphite using wet ball milling, J. Mater. Chem., 20 (2010) 5817–5819.
  81. P.T.L. Huong, T.H. Le, V.N. Phan, T.Q. Huy, H.N. Man, V.D. Lam, A.T. Le, Application of graphene oxide-MnFe2O4 magnetic nanohybrids as magnetically separable adsorbent for highly efficient removal of arsenic from water, J. Electron. Mater., 45 (2016) 2372–2380.
  82. C. Prasad, P.K. Murthy, R.H. Krishna, R.S. Rao, V. Suneetha, P. Venkateswarlu, Bio-inspired green synthesis of RGO/Fe3O4 magnetic nanoparticles using Murrayakoenigii leaves extract and its application for removal of Pb(II) from aqueous solution, J. Environ. Chem. Eng., 5 (2017) 1–31.
  83. Z. Wan, J. Wang, Degradation of sulfamethazine using Fe3O4-Mn3O4/reduced graphene oxide hybrid as Fenton-like catalyst, J. Hazard. Mater., 324 (2016) 653–664.
  84. A.K. Rai, S. Kim, J. Gim, M.H. Alfaruqi, V. Mathew, J. Kim, Electrochemical lithium storage of a ZnFe2O4/graphene nanocomposite as an anode material for rechargeable lithium ion batteries, RSC Adv., 4 (2014) 47087–47095.
  85. J. Zhu, M. Xu, X. Meng, K. Shang, H. Fan, S. Ai, Electroenzymatic degradation of carbofuran with the graphene oxide–Fe3O4–hemoglobin composite in an electrochemical reactor, Process Biochem., 47 (2012) 2480–2486.
  86. Y. Guo, Enhanced photocatalytic reduction activity of uranium(VI) from aqueous solution using the Fe2O3-graphene oxide nanocomposite, Dalton Trans., 2 (2017) 1–3.
  87. S. Chella, Solvothermal synthesis of MnFe2O4-graphene composite—investigation of its adsorption and antimicrobial properties, Appl. Surf. Sci., 327 (2015) 27–36.
  88. Y. Lin, Ternary Graphene–TiO2–Fe3O4 nanocomposite as a recollectable photocatalyst with enhanced durability, Eur. J. Inorg. Chem., 28 (2012) 4439–4444.
  89. D. Zhao, X. Gao, C. Wu, R. Xie, S. Feng, C. Chen, Facile preparation of amino functionalized graphene oxide decorated with Fe3O4 nanoparticles for the adsorption of Cr(VI), Appl. Surf. Sci., 384 (2016) 1–9.
  90. Y. Fu, X. Wang, Magnetically separable ZnFe2O4–graphene catalyst and its high photocatalytic performance under visible light irradiation, Ind. Eng. Chem. Res., 50 (2011) 7210–7218.
  91. X.L. Wu, Y. Shi, S. Zhong, H. Lin, J.R. Chen, Facile synthesis of Fe3O4-graphene@mesoporous SiO2 nanocomposites for efficient removal of methylene blue, Appl. Surf. Sci., 378 (2016) 80–86.
  92. X.L. Wu, L. Wang, C.L. Chen, A.W. Xu, X.K. Wang, Waterdispersible magnetite-graphene-LDH composites for efficient arsenate removal, J. Mater. Chem., 21 (2011) 17353–17359.
  93. L. Li, J. Hu, X. Shi, M. Fan, J. Luo, X. Wei, Nanoscale zerovalent metals: a review of synthesis, characterization, and applications to environmental remediation, Environ. Sci. Pollut. Res., 23 (2016) 17880–17885.
  94. M.P. Deosarkar, S.M. Pawar, S.H. Sonawane, B.A. Bhanvase, Process intensification of uniform loading of SnO2 nanoparticles on graphene oxide nanosheets using a novel ultrasound assisted in situ chemical precipitation method, Chem. Eng. Processing:Process Intensif., 70 (2013) 48–54.
  95. M.P. Deosarkar, S.M. Pawar, B.A. Bhanvase, In situ sonochemical synthesis of Fe3O4–graphene nanocomposite for lithium rechargeable batteries, Chem. Eng. Processing: Process Intensif., 83 (2014) 49–55.
  96. N. Rahman, U. Haseen, Equilibrium modeling, kinetic, and thermodynamic studies on adsorption of Pb(II) by a hybrid inorganic–organic material: polyacrylamide zirconium(IV), iodate. Ind. Eng. Chem. Res., 53 (2014) 8198–8207.
  97. S. Chandra, S. Bag, R. Bhar, P. Pramanik, Sonochemical synthesis and application of rhodium–graphene nanocomposite, J. Nanopart. Res., 13 (2010) 2769–2777.
  98. X.F. Zhang, L.L. Du, H. Wang, X.L. Dong, X.X. Zhang, C.C. Ma, H.C. Ma, Highly ordered mesoporous BiVO4: controllable ordering degree and super photocatalytic ability under visible light, Microporous Mesoporous Mater., 173 (2013) 175–180.
  99. D. Zhao, EDTA functionalized Fe3O4/graphene oxide for efficient removal of U(VI) from aqueous solutions, J. Colloid Interface Sci., 506 (2017) 300–308.
  100. G.W. Zhou, Facile spray drying route for the three-dimensional graphene-encapsulated Fe2O3 nanoparticles for lithium ion battery anodes, Ind. Eng. Chem. Res., 52 (2013) 1197–1204.
  101. X. Huang, Y. Niu, W. Hu, Fe/Fe3C nanoparticles loaded on Fe/N-doped graphene as an efficient heterogeneous fenton catalyst for degradation of organic pollutants, Colloids Surf., A, 518 (2017) 145–150.
  102. C. Lamberti, The use of synchrotron radiation techniques in the characterization of strained semiconductor heterostructures and thin films, Surf. Sci. Rep., 53 (2004) 186–197.
  103. S.D. Taylor, J. Liu, B.W. Arey, D.K. Schreiber, D.E. Perea, K.M. Rosso, Resolving Fe(II) sorption and oxidative growth on hematite (001) using atom probe tomography, J. Phys. Chem. C, 122 (2018) 3903–3914.
  104. S.D. Taylor, M.C. Marcano, U. Becker, A first principles investigation of electron transfer between Fe(II) and U(VI) on insulating Al- vs. semiconducting Fe-oxide surfaces via the proximity effect, Geochim. Cosmochim. Acta, 197 (2016) 1–38.
  105. S.E. Franklin, R.A. Stark, Application of secondary ion mass spectrometry to study of graphite morphology in cast iron, Metal Sci., 18 (1984) 187–199.
  106. F. Beate, V. Andreas, K. Ruben, Redox-controlled changes in cadmium solubility and solid-phase speciation in a paddy soil as affected by reducible sulfate and copper, Environ. Sci. Technol., 47 (2013) 12775–12783.
  107. M. Fan, T. Li, J. Hu, R. Cao, Q. Wu, X. Wei, L. Li, X. Shi, W. Ruan, Synthesis and characterization of reduced graphene oxidesupported nanoscale zero-valent iron (nZVI/rGO) composites used for Pb(II) removal, Materials, 9 (2016) 687–692.
  108. A. Boyde, E. Maconnachie, S.A. Reid, G. Delling, G.R. Mundy, Scanning electron microscopy in bone pathology: review of methods, potential and applications, Scan Electron Microsc., 6 (1986) 1537–1554.
  109. P. Echlin, Low temperature scanning electron microscopy: a review, J. Microsc., 112 (2011) 47–61.
  110. W.Q. Ruan, J.W. Hu, J.M. Qi, Y. Hou, R.S. Cao, X.H. Wei, Removal of crystal violet by using reduced-grapheneoxide- supported bimetallic Fe/Ni nanoparticles (rGO/Fe/Ni): application of artificial intelligence modeling for the optimization process, Materials, 11 (2018) 865–871.
  111. T. Shojaeimehr, F. Rahimpour, M.A. Khadivi, M. Sadeghi, A modeling study by response surface methodology (RSM) and artificial neural network (ANN) on Cu2+ adsorption optimization using light expended clay aggregate (LECA), J. Ind. Eng. Chem., 20 (2014) 870–880.
  112. Z. Gao, D. Zhang, Y. Ge, Design optimization of a spatial six degree-of-freedom parallel manipulator based on artificial intelligence approaches, Robot. Cim. Int. Manuf., 26 (2010) 180–189.
  113. R. Cao, M. Fan, J. Hu, W. Ruan, X. Wu, X. Wei, Artificial intelligence based optimization for the Se(IV) removal from aqueous solution by reduced graphene oxide-supported nanoscale zero-valent iron composites, Materials, 11 (2018) 428–435.
  114. E.S. Elmolla, M. Chaudhuri, M.M. Eltoukhy, The use of artificial neural network (ANN) for modeling of COD removal from antibiotic aqueous solution by the Fenton process, J. Hazard. Mater., 179 (2010) 127–134.
  115. F. Heydari, M. Ghaedi, A. Ansari, A.M. Ghaedi, Random forest model for removal of methylene blue and lead(II) ion using activated carbon obtained from Tamarisk, Desal. Wat. Treat., 57 (2015) 1–19.
  116. S. Eslamian, N. Lavaei, Modelling nitrate pollution of groundwater using artificial neural network and genetic algorithm in an arid zone, Int. J. Water, 5 (2009) 194–203.
  117. P. Kundu, A. Debsarkar, S. Mukherjee, Artificial neural network modeling for biological removal of organic carbon and nitrogen from slaughterhouse wastewater in a sequencing Batch reactor, Adv. Artif. Neural Syst., 2013 (2013) 1–15.
  118. F.M. Santin, R.V.D. Silva, J.M.V. Grzybowski, Artificial neural network ensembles and the design of performanceoriented riparian buffer strips for the filtering of nitrogen in agricultural catchments, Ecol. Eng., 94 (2016) 493–502.
  119. M. Huang, J. Wan, Y. Ma, Monitoring of anoxic/oxic process for nitrogen and chemical oxygen demand removal using fuzzy neural networks, Water Environ. Res., 81 (2009) 654–663.
  120. Y. Zhang, B. Pan, Modeling batch and column phosphate removal by hydrated ferric oxide-based nanocomposite using response surface methodology and artificial neural network, Chem. Eng. J., 249 (2014) 111–120.
  121. S. Mandal, S.S. Mahapatra, M.K. Sahu, R.K. Patel, Artificial neural network modeling of As(III) removal from water by novel hybrid material, Process Saf. Environ., 93 (2015) 249–264.
  122. E.A. Dil, M. Ghaedi, A. Asfaram, S. Hajati, F. Mehrabi, A. Goudarzi, Preparation of nanomaterials for the ultrasoundenhanced removal of Pb2+ ions and malachite green dye: Chemometric optimization and modeling, Ultrason. Sonochem., 34 (2017) 677–691.
  123. T. Singh, V. Singh, S. Sinha, Prediction of cadmium removal using an artificial neural network and a neuro-fuzzy technique, Mine Water Environ., 25 (2006) 214–219.
  124. B.H. Lee, M. Scholz, Application of the self-organizing map (SOM) to assess the heavy metal removal performance in experimental constructed wetlands, Water Res., 40 (2006) 3367–3374.
  125. S. Chattoraj, N.K. Mondal, B. Das, P. Roy, B. Sadhukhan, Carbaryl removal from aqueous solution by Lemna major biomass using response surface methodology and artificial neural network, J. Environ. Chem. Eng., 2 (2014) 1920–1928.
  126. M. Wang, S. Wang, An optical performance monitoring model based on RBFANN trained with Eye-Diagram, Procedia Eng., 29 (2012) 53–57.
  127. A.A. Ismaiel, M.K. Aroua, R. Yusoff, Palm shell activated carbon impregnated with task-specific ionic-liquids as a novel adsorbent for the removal of mercury from contaminated water, Chem. Eng. J., 225 (2013) 306–314.
  128. H. Zheng, D.H. Liu, Y. Zheng, S.P. Liang, Z. Liu, Sorption isotherm and kinetic modeling of aniline on Cr-bentonite, J. Hazard. Mater., 167 (2009) 141–147.
  129. K.V. Kumar, K. Porkodi, F. Rocha, Comparison of various error functions in predicting the optimum isotherm by linear and non-linear regression analysis for the sorption of basic red 9 by activated carbon, J. Hazard. Mater., 150 (2008) 158–165.
  130. Y.S. Ho, Selection of optimum sorption isotherm, Carbon, 42 (2004) 2115–2116.
  131. A. Kausar, H.N. Bhatti, G. Mackinnon, Equilibrium, kinetic and thermodynamic studies on the removal of U(VI) by low cost agricultural waste, Colloids Surf., B, 111 (2013) 124–133.
  132. X. Rong, F. Qiu, J. Qin, H. Zhao, J. Yan, D. Yang, A facile hydrothermal synthesis, adsorption kinetics and isotherms to Congo Red azo-dye from aqueous solution of NiO/graphene nanosheets adsorbent, J. Ind. Eng. Chem., 26 (2015) 354–363.
  133. M. Alkan, Adsorption kinetics and thermodynamics of an anionic dye onto sepiolite, Mesoporous Mater., 101 (2007) 388–396.
  134. T. Qi, C. Huang, S. Yan, X.J. Li, S.Y. Pan, Synthesis, characterization and adsorption properties of magnetite/ reduced graphene oxide nanocomposites, Talanta, 144 (2015) 1116–1124.
  135. E.A. Dil, Application of artificial neural network and response surface methodology for the removal of crystal violet by zinc oxide nanorods loaded on activate carbon: kinetics and equilibrium study, J. Taiwan Inst. Chem. Eng., 59 (2016) 210–220.
  136. V. Srivastava, Y.C. Sharma, M. Sillanpää, Application of nano-magnesso ferrite (n-MgFe2O4) for the removal of Co2+ ions from synthetic wastewater: kinetic, equilibrium and thermodynamic studies, Appl. Surf. Sci., 338 (2015) 42–54.
  137. A. Çelekli, H. Bozkurt, F. Geyik, Artificial neural network and genetic algorithms for modeling of removal of an azo dye on walnut husk, Desal. Wat. Treat., 57 (2015) 1–12.
  138. M.I. Inyang, A review of biochar as a low-cost adsorbent for aqueous heavy metal removal, Crit. Rev. Environ. Sci. Technol., 46 (2016) 1–56.
  139. Z. Liu, F.S. Zhang, Removal of lead from water using biochars prepared from hydrothermal liquefaction of biomass, J. Hazard. Mater., 167 (2009) 933–939.
  140. W.K. Park, Feasible water flow filter with facilely functionalized Fe3O4-non-oxidative graphene/CNT composites for arsenic removal, J. Environ. Chem. Eng., 4 (2016) 3246–3252.
  141. P.K. Boruah, B. Sharma, N. Hussain, M.R. Das, Magnetically recoverable Fe3O4/graphene nanocomposite towards efficient removal of triazine pesticides from aqueous solution: investigation of the adsorption phenomenon and specific ion effect, Chemosphere, 168 (2017) 1058–1062.
  142. M. Fan, T. Li, J. Hu, R. Cao, X. Wei, X. Shi, W. Ruan, Artificial neural network modeling and genetic algorithm optimization for cadmium removal from aqueous solutions by reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/ rGO) composites, Materials, 10 (2017) 544–551.
  143. W. Fan, W. Gao, C. Zhang, W.T. Weng, J. Pan, T. Liu, Hybridization of graphene sheets and carbon-coated Fe3O4 nanoparticles as a synergistic adsorbent of organic dyes, J. Mater. Chem., 22 (2012) 25108–25115.
  144. S. Kumar, R.R. Nair, P.B. Pillai, S.N. Gupta, M.A.R. Iyengar, A.K. Sood, Graphene oxide-MnFe2O4 magnetic nanohybrids for efficient removal of lead and arsenic from water, ACS Appl. Mater. Interface, 6 (2014) 17426–17430.
  145. X. Shi, W. Ruan, J. Hu, M. Fan, R. Cao, X. Wei, Optimizing the removal of rhodamine B in aqueous solutions by reduced graphene oxide-supported nanoscale zerovalent iron (nZVI/rGO) using an artificial neural network-genetic algorithm (ANN-GA), Nanomaterials, 7 (2017) 309–315.
  146. L. Chen, S. Feng, D. Zhao, S. Chen, F. Li, C. Chen, Efficient sorption and reduction of U(VI) on zero-valent ironpolyaniline- graphene aerogel ternary composite, J. Colloid Interface Sci., 490 (2017) 197–203.
  147. L.Y. Zhu, X.Y. Zeng, X.P. Li, P. Yang, R.H. Yun, Hydrothermal synthesis of magnetic Fe3O4/graphene composites with good electromagnetic microwave absorbing performances, J. Magn. Magn. Mater., 426 (2017) 114–120.
  148. S. Nethaji, A. Sivasamy, Graphene oxide coated with porous iron oxide ribbons for 2, 4-Dichlorophenoxyacetic acid (2,4-D) removal, Ecotoxicol, Environ. Saf., 138 (2017) 292–297.
  149. H.V. Tran, L.T. Bui, T.T. Dinh, D.H. Le, C.D. Huynh, A.X. Trinh, Graphene oxide/Fe3O4/chitosan nanocomposite: a recoverable and recyclable adsorbent for organic dyes removal. Application to methylene blue, Mater. Res. Express., 4 (2017) 701–711.
  150. A. Sinha, N.R. Jana, Graphene-based composite with γ-Fe2O3 nanoparticle for the high-performance removal of endocrinedisrupting compounds from water, Chem. Asian J., 8 (2013) 786–791.
  151. X.L. Wu, P. Xiao, S. Zhong, K. Fang, H. Lin, J. Chen, Magnetic ZnFe2O4@chitosan encapsulated in graphene oxide for adsorptive removal of organic dye, RSC Adv., 7 (2017) 28145–28151.
  152. N.U. Yamaguchi, R. Bergamasco, S. Hamoudi, Magnetic MnFe2O4–graphene hybrid composite for efficient removal of glyphosate from water, Chem. Eng. J., 295 (2016) 391–402.
  153. Y.J. Yao, Magnetic recoverable MnFe2O4 and MnFe2O4-graphene hybrid as heterogeneous catalysts of peroxymonosulfate activation for efficient degradation of aqueous organic pollutants, J. Hazard. Mater., 270 (2014) 61–70.
  154. A. Muthukrishnaraj, J. Manokaran, M. Vanitha, K.V. Thiruvengadaravi, P. Baskaralingam, N. Balasubramanian, Equilibrium, kinetic and thermodynamic studies for the removal of Zn(II) and Ni(II) ions using magnetically recoverable graphene/Fe3O4 composite, Desal. Wat. Treat., 56 (2015) 2485–2501.
  155. T.Q. Dat, N.T. Ha, D.Q. Hung, Reduced graphene oxide-Cu0.5Ni0.5Fe2O4-polyaniline nanocomposite: preparation, characterization and microwave absorption properties, J. Electron. Mater., 46 (2017) 3707–3713.
  156. J. Liu, W. Liu, Y. Wang, M. Xu, B. Wang, A novel reusable nanocomposite adsorbent, xanthated Fe3O4-chitosan grafted onto graphene oxide, for removing Cu(II) from aqueous solutions, Appl. Surf. Sci., 367 (2016) 327–334.
  157. H. Jabeen, V. Chandra, S. Jung, Enhanced Cr(VI) removal using iron nanoparticle decorated graphene, Nanoscale, 3 (2011) 3583–3585.
  158. M. Fan, J. Hu, R. Cao, K. Xiong, X. Wei, Modeling and prediction of copper removal from aqueous solutions by nZVI/rGO magnetic nanocomposites using ANN-GA and ANN-PSO, Sci. Rep., 7 (2017) 1–14.
  159. C.M. Babu, B. Palanisamy, B. Sundaravel, K. Shanthi, V. Murugesan, Dihalogen crosslinked Fe3O4-reduced graphene oxide nanocomposites for arsenic and mercury adsorption, Sci. Adv. Mater., 7 (2015) 794–805.
  160. J. Barker, Enhanced adsorption of carbon nanocomposites exhausted with 2,4-dichlorophenoxyacetic acid after regeneration by thermal oxidation and microwave irradiation, Environ. Sci. Nano, 1 (2014) 113–116.
  161. R. Cao, M. Fan, J. Hu, W. Ruan, K. Xiong, X. Wei, Optimizing low-concentration mercury removal from aqueous solutions by reduced graphene oxide-supported Fe3O4 composites with the aid of an artificial neural network and genetic algorithm, Materials, 10 (2017) 1–17.
  162. Z. Clemente, V.L. Castro, C.M. Jonsson, L.F. Fraceto, Ecotoxicology of nano-TiO2 an evaluation of its toxicity to organisms of aquatic ecosystems, Int. J. Environ. Res., 6 (2011) 33–50.
  163. L. Li, J. Hu, X. Shi, M. Fan, L. Jin, X. Wei, Nanoscale zerovalent metals: a review of synthesis, characterization, and applications to environmental remediation, Environ. Sci. Pollut. Res., 23 (2016) 1–21.
  164. R.D. Handy, R. Owen, E. Valsami-Jones, The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs, Ecotoxicology, 17 (2008) 315–325.
  165. M. Markovic, Ecotoxicology of manufactured graphene oxid nanomaterials and derivation of preliminary guideline values for freshwater environments, Environ. Toxicol. Chem., 37 (2018) 1340–1348.
  166. M.I.N. Ahamed, Ecotoxicity concert of nano zero-valent iron particles-a review, J. Crit. Rev., 6 (2014) 112–120.
  167. Y.S. Temsah, E.J. Joner, Ecotoxicological effects on earthworms of fresh and aged nano-sized zero-valent iron (nZVI) in soil, Chemosphere, 89 (2012) 76–82.
  168. D. Rede, Lúcia H.M.L.M. Santos, S. Ramos, F. Oliva-Teles, C. Antao, S.R. Sousa, C. Delerue-Matos, Ecotoxicological impact of two soil remediation treatments in lactuca sativa seeds, Chemosphere, 159 (2016) 193–198.
  169. X. Lv, Removal of chromium(VI) from wastewater by nanoscale zero-valent iron particles supported on multiwalled carbon nanotubes, Chemosphere, 85 (2011) 1204–1209.
  170. T. Zheng, Reactivity characteristics of nanoscale zerovalent iron--silica composites for trichloroethylene remediation, Environ. Sci. Technol., 42 (2008) 4494–4499.
  171. A. Tamion, E. Cadel, C. Bordel, D. Blavette, 3D atom probe investigation of (Fe/Dy) magnetic multilayers, Surf. Interface Anal., 39 (2007) 237–239.