1. T. Saleh, Mercury sorption by silica/carbon nanotubes and silica/activated carbon: a comparison study, J. Water Supply Res. Technol. AQUA, 64 (2015) 892.
  2. V.B. Yadava, R. Gadia, S. Kalra, Clay based nanocomposites for removal of heavy metals from water: a review, J. Environ. Manage., 232 (2019) 803–817.
  3. H.N.M.E. Mahmud, A.O. Huq, R. Binti Yahya, The removal of heavy metal ions from wastewater/aqueous solution using polypyrrole-based adsorbents, RSC Adv., 18 (2016) 14778–14791.
  4. H. Javadian, Application of kinetic, isotherm and thermodynamic models for the adsorption of Co(II) ions on polyaniline/ polypyrrole copolymer nanofibers from aqueous solution, J. Ind. Eng. Chem., 20 (2014) 4233–4241.
  5. B. Samiey, C.H. Cheng, J. Wu, Organic-inorganic hybrid polymers as adsorbents for removal of heavy metal ions from solutions: a review, Materials, 7 (2014) 673–726.
  6. M.A. Renu, S. Kailash, S. Upadhyaya, R.K. Dohare, Removal of heavy metals from wastewater using modified agricultural adsorbents, Mater. Today:. Proc., 4 (2017) 10534–10538.
  7. S. Hydari, H. Sharififard, M. Nabavinia, M.R.A. Parvizi, Comparative investigation on removal performances of commercial activated carbon, chitosan biosorbent and chitosan/ activated carbon composite for cadmium, Chem. Eng. J., 194 (2012) 276–282.
  8. Y.C. Sharma, V. Srivastava, V.K. Singh, S.N. Kaul, C.H. Weng, Nano-adsorbents for the removal of metallic pollutants from water and wastewater, Environ. Technol., 30 (2009) 583–609.
  9. A. Amari, M. Chlendi, A. Gannouni, A. Bellagi, Optimised activation of bentonite for toluene adsorption, Appl. Clay Sci., 47 (2010) 457–461.
  10. M. Auta, B.H. Hameed, Acid modified local clay beads as effective low-cost adsorbent for dynamic adsorption of methylene blue, J. Ind. Eng. Chem., 19 (2013) 1153–1161.
  11. A.K. Panda, B.G. Mishra, D.K. Mishra, R.K. Singh, Effect of sulphuric acid treatment on the physico-chemical characteristics of kaolin clay, Colloids Surf., A, 363 (2010) 98–104.
  12. E. Makó, Z. Senkár, J. Kristóf, V. Vágvölgyi, Surface modification of mechanochemically activated kaolinites by selective leaching, J. Colloid Interface Sci., 294 (2006) 362–370.
  13. C. Belver, M.A.B. Munoz, M.A. Vicente, Chemical activation of a kaolinite underacid and alkaline conditions, Chem. Mater., 14 (2002) 2033–2043.
  14. J. Madejova, FTIR techniques in clay mineral studies, Vib. Spectrosc., 31 (2003) 1–10.
  15. B.N. Dudkin, I.V. Loukhina, E.G. Avvakumov, V.P. Isupov, Application of mechnochemical treatment of disintegration of kaolinite with sulphuric acid, Chem. Sustainable Dev., 12 (2004) 327–330.
  16. R. Delhez, T.H. Keijser, E.J. Mittemeijer, E. Fresenius, Determination of crystallite size and lattice distortions through X-ray diffraction line profile analysis, Anal. Chem., 312 (1982) 1–10.
  17. H. Suquet, Effects of dry grinding and leaching on the crystal structure of chrysotile, Clays Clay Miner., 37 (1989) 439–445.
  18. K.K. Taha, M.S. Tagelsir, A.M. Musa, Performance of Sudanese activated bentonite in bleaching cotton seed oil, J. Bangladesh Chem. Soc., 24 (2011) 191–201.
  19. N. Hula, O. Muserret, S. Yukusel, The effect of sulphuric acid activation on crystallinity, surface area, porosity, surface acidity and bleaching power of bentonite, J. Food Chem., 105 (2007) 156–163.
  20. F. Hussin, M.K. Aroua, W.M.A.W. Daud, Surface chemistry and activation of bleaching earth: a review, Chem. Eng. J., 170 (2011) 90–106.
  21. A. Olgun, N. Atar, Equilibrium, thermodynamics and kinetic studies for the adsorption of lead(II) and nickel(II) onto clay mixture containing boron impurity, J. Ind. Eng. Chem., 18 (2012) 1751–1757.
  22. M. Auta, B.H. Hammed, Optimized waste tea activated carbon for adsorption of methylene blue and acid blue and acid blue 29 dyes using response surface methodology, Chem. Eng. J., 175 (2011) 233–243.
  23. L.G.T. Dos Reis, N.F. Robaina, W.F. Pacheco, R.J. Cassella, Separation of Malachite Green and Methyl Green cationic dyes from aqueous medium by adsorption on Amberlite XAD-2 and XAD-4 resins using sodium dodecylsulfate as carrier, Chem. Eng. J., 171 (2011) 532–540.
  24. N. Atar, A. Olgun, Removal of basic and acid dyes from aqueous solution, Desalination, 249 (2009) 109.
  25. F.D. Badii, M.A. Ardjani, N.Y. Saberi, S.Z. Limaee Shifaei, Adsorption of Acid Blue 25 on diatomite in aqueous solutions, Indian J. Chem. Technol., 17 (2010) 7–16.
  26. Y. Salameh, N. Al-Lagtah, M.N.M. Ahmad, S.J. Allen, G.M. Walker, Kinetic and thermodynamic investigations on arsenic adsorption onto dolomitic sorbents, Chem. Eng. J., 160 (2010) 440–446.
  27. I. Langmuir, The constitution and fundamental properties of solids and liquids, J. Am. Chem. Soc., 38 (1916) 2221–2295.
  28. H.M.F. Freundlich, Over the adsorption in solution, J. Physiochem., 57 (1906) 385–470.
  29. M.J. Temkin, V. Pyzhev, Recent modifications to Langmuir isotherms, Acta Physiochemical., 12 (1940) 217–225.
  30. N. Atar, A. Olgun, S. Wang, Adsorption of cadmium(II) and zinc(II) on boron enrichment process waste in aqueous solutions: batch and fixed-bed system studies, Chem. Eng. J., 192 (2012) 1–7.
  31. C.M. Futalan, C.C. Kan, M.L. Dalida, K.J. Hsien, C. Pascua, M.W. Wan, Comparative and competitive adsorption of copper, lead, and nickel using chitosan immobilized on bentonite, Carbohydr. Polym., 83 (2011) 528–536.
  32. M. Eloussaief, M. Benzina, Efficiency of natural and acidactivated clays in the removal of Pb(II) from aqueous solutions, J. Hazard. Mater., 178 (2011) 753–757.
  33. F. Sharifipour, S. Hojati, A. Landi, A. Faz Cano, Kinetics and thermodynamics of lead adsorption from aqueous solutions onto Iranian sepiolite and zeolite, Int. J. Environ. Res., 9 (2015) 1001–1010.
  34. A. Sdiri, K. Mohamed, B. Samir, E. Sherif, A natural clay adsorbent for selective removal of lead from aqueous solutions, J. Appl. Clay Sci., 126 (2016), 89–97.
  35. T. Wajima, Preparation of adsorbent with lead removal ability from paper sludge using sulfuric acid impregnation, APCBEE Procedia, 10 (2014) 164–169.
  36. A. Sdiri, T. Higashi, T. Hatta, F. Jamoussi, N. Tase, Evaluating the adsorptive capacity of montmorillonitic and calcareous clays on the removal of several heavy metals in aqueous systems, Chem. Eng. J., 172 (2011) 37–46.
  37. A. Salem, R. Akbari Sene, Removal of lead from solution by combination of natural zeolite–kaolin–bentonite as a new lowcost adsorbent, Chem. Eng. J., 174 (2011) 619–628.
  38. A. Sari, M. Tuzen, D. Citak, M. Soylak, Equilibrium, kinetic and thermodynamic studies of adsorption of Pb(II) from aqueous solution onto Turkish kaolinite clay, J. Hazard. Mater., 149 (2007) 283–291.
  39. A. Shahat, M.R. Awual, M.A. Khaleque, M.Z. Alam, M. Naushad, A.M.S. Chowdhury, Large-pore diameter nano-adsorbent and its application for rapid lead(II) detection and removal from aqueous media, Chem. Eng. J., 273 (2015) 286–295.
  40. V. Vetriselvi, R. Jaya Santhi, Redox polymer as an adsorbent for the removal of Chromium(VI) and lead(II) from the tannery effluents, Water Res. Ind., 10 (2015) 39–52.
  41. D. Tiwari, Lalhmunsiama, S.M. Lee, Iron-impregnated activated carbons precursor to rice hulls and areca nut waste in the remediation of Cu(II) and Pb(II) contaminated waters: a physicochemical studies, Desal. Wat. Treat., 53 (2015) 1591–1605.
  42. S.M. Lee, C. Laldawngliana, D. Tiwari, Iron oxide nanoparticles- immobilized-sand material in the treatment of Cu(II), Cd(II) and Pb(II) contaminated waste waters, Chem. Eng. J., 195–196 (2012) 103–111.
  43. Lalhmunsiama, S.M. Lee, D. Tiwari, Manganese oxide immobilized activated carbons in the remediation of aqueous wastes contaminated with copper (II) and lead (II), Chem. Eng. J., 225 (2013) 128–137.
  44. S. Lagergren, S.K. Svenska, On the theory of so-called adsorption of dissolved substances, Royal Swedish Acad. Sci. Doc., Band 24 (1898) 1–13.
  45. Y.S. Ho, S. McKay, Pseudo-second-order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  46. S. Azizian, B. Yahyaei, Adsorption of 18-crown-6 from aqueous solution on granular activated carbon: a kinetic modeling study, J. Colloid Interface Sci., 299 (2006) 112–115.
  47. L.T. Nanganoa, J.M. Ketcha, J.N. Ndi, Kinetic and equilibrium modeling of the adsorption of amaranth from aqueous solution onto smectite clay, Res. J. Chem. Sci., 4 (2014) 7–14.
  48. S.S.M. Hassan, N.S. Awwad, H.A. Aboterika, Removal of synthetic reactive dyes from textile wastewater by Sorel’s cement, J. Hazard. Mater., 162 (2009) 994–999.
  49. S. Hong, C. Wen, J. He, F. Gan, Y. Ho, Adsorption thermodynamics of Methylene Blue onto bentonite, J. Hazard. Mater., 167 (2009) 630–633.
  50. H. Aghdasinia, H.R. Asibi, Adsorption of a cationic dye (methylene blue) by Iranian natural clays from aqueous solutions: equilibrium, kinetic and thermodynamic study, Environ. Earth Sci., 77 (2018) 218.
  51. Q. Li, Q. Yue, Y. Su, B. Gao, H. Sun, Equilibrium, thermodynamics and process design to minimize adsorbent amount for the adsorption of acid dyes onto cationic polymer-loaded bentonite, Chem. Eng. J., 158 (2010) 489–449.
  52. T. Chen, T.Q. Zhang, T.H. Zhang, C.H. Gan, C.Y. Zheng, G. Yu, Carbon nanotube reinforced hydroxyapatite composite coatings produced through laser surface alloying, Carbon, 44 (2006) 37–45.
  53. F.N. Oskui, H. Aghdasinia, M.G. Sorkhabi, Adsorption of Cr(III) using an Iranian nanoclay: applicable to tannery wastewater: equilibrium, kinetic, and thermodynamic, Environ. Earth Sci., 78 (2019) 106.