References

  1. M.A. Monfared, N. Kasiri, T. Mohammadi, A CFD model for prediction of critical electric potential preventing membrane fouling in oily waste water treatment, J. Membr. Sci., 539 (2017) 320–328.
  2. E. Drioli, G. Di Profio, E. Curcio, Membrane-Assisted Crystallization Technology, World Scientific, Singapore, 2015.
  3. Z. Ze, J. Sx, Hollow fiber membrane contactor absorption of CO2 from the flue gas: review and perspective, Glob. Nest J., 16 (2014) 355–374.
  4. K. He, S. Chen, C. Huang, L. Zhang, Fluid flow and mass transfer in an industrial-scale hollow fiber membrane contactor scaled up with small elements, Int. J. Heat Mass Tran., 127 (2018) 289–301.
  5. M. Wang, S. Mondal, I.M. Griffiths, The role of fouling in optimizing direct-flow filtration module design, Chem. Eng. Sci., 163 (2017) 215–222.
  6. L. Zhuang, H. Guo, P. Wang, G. Dai, Study on the flux distribution in a dead-end outside-in hollow fiber membrane module, J. Membr. Sci., 495 (2015) 372–383.
  7. J. Günther, D. Hobbs, C. Albasi, C. Lafforgue, A. Cockx, P. Schmitz, Modeling the effect of packing density on filtration performances in hollow fiber microfiltration module: a spatial study of cake growth, J. Membr. Sci., 389 (2012) 126–136.
  8. I. Noda, D.G. Brown-West, C.C. Gryte, Effect of flow maldistribution on hollow fiber dialysis — experimental studies, J. Membr. Sci., 5 (1979) 209–225.
  9. J.C. Kim, J.H. Kim, J. Sung, H. Kim, E. Kang, S.H. Lee, J.K. Kim, H.C. Kim, B.G. Min, C. Ronco, Effects of arterial port design on blood flow distribution in hemodialyzers, Blood Purif., 28 (2009) 260–267.
  10. A. Frank, G.G. Lipscomb, M. Dennis, Visualization of concentration fields in hemodialyzers by computed tomography, J. Membr. Sci., 175 (2000) 239–251.
  11. Y. Wang, F. Chen, Y. Wang, G. Luo, Y. Dai, Effect of random packing on shell-side flow and mass transfer in hollow fiber module described by normal distribution function, J. Membr. Sci., 216 (2003) 81–93.
  12. V. Chen, M. Hlavacek, Application of Voronoi tessellation for modeling randomly packed hollow-fiber bundles, AIChE J., 40 (1994) 606–612.
  13. J.D. Rogers, R.L. Long Jr., Modeling hollow fiber membrane contactors using film theory, Voronoi tessellations, and facilitation factors for systems with interface reactions, J. Membr. Sci., 134 (1997) 1–17.
  14. J. Wu, V. Chen, Shell-side mass transfer performance of randomly packed hollow fiber modules, J. Membr. Sci., 172 (2000) 59–74.
  15. L. Bao, G.G. Lipscomb, Well-developed mass transfer in axial flows through randomly packed fiber bundles with constant wall flux, Chem. Eng. Sci., 57 (2002) 125–132.
  16. L. Bao, G. Glenn Lipscomb, Mass transfer in axial flows through randomly packed fiber bundles with constant wall concentration, J. Membr. Sci., 204 (2002) 207–220.
  17. W. Ding, D. Gao, Z. Wang, L. He, Theoretical estimation of shellside mass transfer coefficient in randomly packed hollow fiber modules with polydisperse hollow fiber outer radii, J. Membr. Sci., 284 (2006) 95–101.
  18. L. Zhang, Heat and mass transfer in a randomly packed hollow fiber membrane module: a fractal model approach, Int. J. Heat Mass Tran., 54 (2011) 2921–2931.
  19. J. Zheng, Y. Xu, Z. Xu, Flow distribution in a randomly packed hollow fiber membrane module, J. Membr. Sci., 211 (2003) 263–269.
  20. J. Zheng, Z. Xu, J. Li, S. Wang, Y. Xu, Influence of random arrangement of hollow fiber membranes on shell side mass transfer performance: a novel model prediction, J. Membr. Sci., 236 (2004) 145–151.
  21. J. Happel, Viscous flow relative to arrays of cylinders, AIChE J., 5 (1959) 174–177.
  22. M. Kostoglou, A.J. Karabelas, On the structure of the singlephase flow field in hollow fiber membrane modules during filtration, J. Membr. Sci., 322 (2008) 128–138.
  23. S. Buetehorn, D. Volmering, K. Vossenkaul, T. Wintgens, M. Wessling, T. Melin, CFD simulation of single-and multiphase flows through submerged membrane units with irregular fiber arrangement, J. Membr. Sci., 384 (2011) 184–197.
  24. W. Li, J. Liu, L. He, J. Liu, S. Sun, Z. Huang, X. Liang, D. Gao, W. Ding, Simulation and experimental study on the effect of channeling flows on the transport of toxins in hemodialyzers, J. Membr. Sci., 501 (2016) 123–133.
  25. H. Chen, C. Cao, L. Xu, T. Xiao, G. Jiang, Experimental velocity measurements and effect of flow maldistribution on predicted permeator performances, J. Membr. Sci., 139 (1998) 259–268.
  26. J. Lemanski, G.G. Lipscomb, Effect of shell‐side flows on hollow‐fiber membrane device performance, AIChE J., 41 (1995) 2322–2326.
  27. L. Bao, B. Liu, G.G. Lipscomb, Entry mass transfer in axial flows through randomly packed fiber bundles, AIChE J., 45 (1999) 2346–2356.
  28. J. Lemanski, G.G. Lipscomb, Effect of shell-side flows on the performance of hollow-fiber gas separation modules, J. Membr. Sci., 195 (2002) 215–228.
  29. L. Bao, G.G. Lipscomb, Effect of random fiber packing on the performance of shell-fed hollow-fiber gas separation modules, Desalination, 146 (2002) 243–248.
  30. P. Keshavarz, S. Ayatollahi, J. Fathikalajahi, Mathematical modeling of gas–liquid membrane contactors using random distribution of fibers, J. Membr. Sci., 325 (2008) 98–108.
  31. S. Chang, A.G. Fane, T.D. Waite, A. Yeo, Unstable filtration behavior with submerged hollow fiber membranes, J. Membr. Sci., 308 (2008) 107–114.
  32. S. Huang, M. Yang, S. Chen, Effects of the random distributions on the longitudinal transport phenomena between an elliptical hollow fiber membrane bundle, J. Membr. Sci., 471 (2014) 362–371.
  33. L. Zhuang, G. Dai, Z. Xu, Three‐dimensional simulation of the time‐dependent fluid flow and fouling behavior in an industrial hollow fiber membrane module, AIChE J., 64 (2018) 2655–2669.
  34. L. Zhuang, H. Guo, G. Dai, Z. Xu, Effect of the inlet manifold on the performance of a hollow fiber membrane module -A CFD study, J. Membr. Sci., 526 (2017) 73–93.
  35. J. Günther, P. Schmitz, C. Albasi, C. Lafforgue, A numerical approach to study the impact of packing density on fluid flow distribution in hollow fiber module, J. Membr. Sci., 348 (2010) 277–286.
  36. X. Li, J. Li, Z. Cui, Y. Yao, Modeling of filtration characteristics during submerged hollow fiber membrane microfiltration of yeast suspension under aeration condition, J. Membr. Sci., 510 (2016) 455–465.
  37. W. Ding, L. He, G. Zhao, X. Luo, M. Zhou, D. Gao, Effect of distribution tabs on mass transfer of artificial kidney, AIChE J., 50 (2004) 786–790.
  38. H.I. Mahon, Permeability Separatory Apparatus and Process Utilizing Hollow Fibers, US Patents 3,228,877, 1966.
  39. P.J. Roache, P.M. Knupp, Completed Richardson Extrapolation, Commun. Numer. Methods Eng., 9 (1993) 365–374.
  40. K.B. Lim, P.C. Wang, H. An, S.C.M. Yu, Computational studies for the design parameters of Hollow Fibre Membrane Modules, J. Membr. Sci., 529 (2017) 263–273.
  41. FLUENT User’s Guide, Fluent Inc., 2006.
  42. B. Tansel, W.Y. Bao, I.N. Tansel, Characterization of fouling kinetics in ultrafiltration systems by resistances in series model, Desalination, 129 (2000) 7–14.
  43. C. Serra, M.J. Clifton, P. Moulin, J. Rouch, P. Aptel, Dead-end ultrafiltration in hollow fiber modules: module design and process simulation, J. Membr. Sci., 145 (1998) 159–172.
  44. L. Zhuang, G. Dai, Numerical simulation of dynamic process during outside-in dead-end filtration in hollow fiber membrane module, CIESC J., 67 (2016) 2841–2850.
  45. J. Wang, X. Gao, G. Ji, X. Gu, CFD simulation of hollow fiber supported NaA zeolite membrane modules, Sep. Purif. Technol., 213 (2019) 1–10.
  46. D. Kim, M. Kwak, K. Kim, Y.K. Chang, Turbulent jet-assisted microfiltration for energy efficient harvesting of microalgae, J. Membr. Sci., 575 (2019) 170–178.
  47. Z. Li, L. Zhang, Flow maldistribution and performance deteriorations in a counter flow hollow fiber membrane module for air humidification/dehumidification, Int. J. Heat Mass Tran., 74 (2014) 421–430.
  48. X. Li, J. Li, J. Wang, H. Wang, B. He, H. Zhang, W. Guo, H.H. Ngo, Experimental investigation of local flux distribution and fouling behavior in double-end and dead-end submerged hollow fiber membrane modules, J. Membr. Sci., 453 (2014) 18–26.
  49. M. Lee, J. Kim, Analysis of local fouling in a pilot-scale submerged hollow-fiber membrane system for drinking water treatment by membrane autopsy, Sep. Purif. Technol., 95 (2012) 227–234.