References

  1. O. Lee, A. Takesono, M. Tada, C.R. Tyler, T. Kudoh, Biosensor zebrafish provide new insights intopotential health effects of environmental estrogens, Environ. Health Perspect., 120 (2012) 990–996.
  2. S. Jobling, R. Williams, A. Johnson, A. Taylor, M.G. Sorokin, M. Nolan, C.R. Tyler, R.V. Aerle, E. Santos, G. Brighty, Predicted exposures to steroid estrogens in UK rivers correlate with widespread sexual disruption in wild fish populations, Environ. Health Perspect., 114 (2006) 32–39.
  3. Z.H. Liu, G.N. Lu, H. Yin, Z. Dang, B. Rittmann, Removal of natural estrogens and their conjugates in municipal wastewater treatment plants: a critical review, Environ. Sci. Technol., 49 (2015) 5288–5300.
  4. J.Y. Hu, T. Aizawa, S. Ookubo, Products of aqueous chlorination of bisphenol A and their estrogenic activity, Environ. Sci. Technol., 36 (2002) 1980–1987.
  5. B.M. Armstrong, J.M. Lazorchak, K.M. Jensen, H.J. Haring, M.E. Smith, R.W. Flick, D.C. Bencic, A.D. Biales, Reproductive effects in fathead minnows (Pimphales promelas) following a 21 d exposure to 17α-ethinylestradiol, Chemosphere, 144 (2016) 366–373.
  6. P.H. Chou, Y.L. Lin, T.C. Liu, K.Y. Chen, Exploring potential contributors to endocrine disrupting activities in Taiwan’s surface waters using yeast assays and chemical analysis, Chemosphere, 138 (2015) 814–820.
  7. L. Zhou, R. Liu, A. Wilding, A. Hibberd, Sorption of selected endocrine disrupting chemicals to different aquatic colloids, Environ. Sci. Technol., 41 (2007) 206–213.
  8. O. Braga, G.A. Smythe, A.I. Schäfer, A.J. Feitz, Fate of steroid estrogens in Australian inland and coastal wastewater treatment plants, Environ. Sci. Technol., 39 (2005) 3351–3358.
  9. E.J. Rosenfeldt, K.G. Linden, Degradation of endocrine disrupting chemicals bisphenol A, ethinyl estradiol, and estradiol during UV photolysis and advanced oxidation processes, Environ. Sci. Technol., 38 (2004) 5476–5483.
  10. R.A. Torres, C. Pétrier, E. Combet, F. Moulet, C. Pulgarin, Bisphenol A mineralization by integrated ultrasound-UV-iron (II) treatment, Environ. Sci. Technol., 41 (2007) 297–302.
  11. E. Kim, C. Jung, J. Han, N. Her, C.M. Park, M. Jang, A. Son, Y. Yoond, Sorptive removal of selected emerging contaminants using biochar in aqueous solution, J. Ind. Eng. Chem., 36 (2016) 364–371.
  12. M. Kołtowski, I. Hilber, T.D. Bucheli, P. Oleszczuk, Effect of activated carbon and biochars on the bioavailability of polycyclic aromatic hydrocarbons in different industrially contaminated soils, Environ. Sci. Pollut. Res., 23 (2016) 11058–11068.
  13. S.E. Hale, J. Lehmann, D. Rutherford, A.R. Zimmerman, R.T. Bachmann, V. Shitumbanuma, A. O’Toole, K.L. Sundqvist, H.H. Arp, G. Cornelissen, Quantifying the total and bioavailable polycyclic aromatic hydrocarbons and dioxins in biochars, Environ. Sci. Technol., 46 (2012) 2830–2838.
  14. B.L. Chen, D.D. Zhou, L.Z. Zhu, Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures, Environ. Sci. Technol., 42 (2008) 5137–5143.
  15. K. Sun, K. Ro. M.X. Guo, J. Novak, H. Mashayekhi, B.S. Xing, Sorption of bisphenol A, 17α-ethinyl estradiol and phenanthrene on thermally and hydrothermally produced biochars, Bioresour. Technol., 102 (2011) 5757–5763.
  16. X.F. Tan, Y.G. Liu, G.M. Zeng, X. Wang, X.J. Hu, Y.L. Gu, Z.Z. Yang, Application of biochar for the removal of pollutants from aqueous solutions, Chemosphere, 125 (2015) 70–85.
  17. B. Pan, D. Lin, H. Mashayekhi, B.S. Xing, Adsorption and hysteresis of bisphenol A and 17α-ethinyl estradiol on carbon nanomaterials, Environ. Sci. Technol., 42 (2008) 5480–5485.
  18. D.Q. Zhu, J.J. Pignatello, Characterization of aromatic compound sorptive interactions with black carbon (charcoal) assisted by graphite as a model, Environ. Sci. Technol., 39 (2005) 2033–2041.
  19. Y.K. Choi, E. Kan, Effects of pyrolysis temperature on the physicochemical properties of alfalfa-derived biochar for the adsorption of bisphenol a and sulfamethoxazole in water, Chemosphere, 218 (2018) 741–748.
  20. K. Yang, B.S. Xing, Adsorption of organic compounds by carbon nanomaterials in aqueous phase: Polanyi theory and its application, Chem. Rev., 110 (2010) 5989–6008.
  21. G.N. Kasozi, A.R. Zimmerman, P. Nkedi-Kizza, B. Gao, Catechol and humic acid sorption onto a range of laboratory-produced black carbons (biochars), Environ. Sci. Technol., 44 (2010) 6189–6195.
  22. X. Xiao, B.L. Chen, L.Z. Zhu, Transformation, morphology, and dissolution of silicon and carbon in rice straw-derived biochars under different pyrolytic temperatures, Environ. Sci. Technol., 48 (2014) 3411–3419.
  23. G. Chu, J. Zhao, F. Chen, X. Dong, D. Zhou, N. Liang, M. Wu, B. Pan, C.E.W. Steinberg, Physico-chemical and sorption properties of biochars prepared from peanut shell using thermal pyrolysis and microwave irradiation, Environ. Pollut., 227 (2017) 372–379.
  24. B.L. Chen, E.J. Johnson, B. Chefetz, L.Z. Zhu, B.S. Xing, Sorption of polar and nonpolar aromatic organic contaminants by plant cuticular materials: role of polarity and accessibility, Environ. Sci. Technol., 39 (2005) 6138–6146.
  25. F.X. Yao, M.C. Arbestain, S. Virgel, F. Blanco, J. Arostegui, J.A. Maciá-Agulló, F. Macìas, Simulated geochemical weathering of a mineral ash-rich biochar in a modified Soxhlet reactor, Chemosphere, 80 (2010) 724–732.
  26. M.X. Xie, W. Chen, Z.Y. Xu, S.R. Zheng, D.Q. Zhu, Adsorption of sulfonamides to demineralized pine wood biochars prepared under different thermochemical conditions, Environ. Pollut., 186 (2014) 187–194.
  27. P. Peng, Y.H. Lang, X.M. Wang, Adsorption behavior and mechanism of pentachlorophenol on reed biochars: pH effect, pyrolysis temperature, hydrochloric acid treatment and isotherms, Ecol. Eng., 90 (2016) 225–233.
  28. X.Y. Guo, X.L. Wang, X.Z. Zhou, X. Ding, B. Fu, S. Tao, B.S. Xing, Impact of the simulated diagenesis on sorption of naphthalene and 1-naphthol by soil organic matter and its precursors, Environ. Sci. Technol., 47 (2013) 12148–12155.
  29. B. Pan, P. Wang, M. Wu, J. Li, D. Zhang, D. Xiao, Sorption kinetics of ofloxacin in soils and mineral particles, Environ. Pollut., 171 (2012) 185–190.
  30. F. Wang, J.H. Haftka, T.L. Sinnige, J.L. Hermens, W. Chen, Adsorption of polar, nonpolar, and substituted aromatics to colloidal graphene oxide nanoparticles, Environ. Pollut., 186 (2014) 226–233.
  31. H.B. Peng, D. Zhang, B. Pan, J.H. Peng, Contribution of hydrophobic effect to the sorption of phenanthrene, 9-phenanthrol and 9, 10-phenanthrenequinone on carbon nanotubes, Chemosphere, 168 (2017) 739–747.
  32. X.L. Wang, J.L. Lu, B.S. Xing, Sorption of organic contaminants by carbon nanotubes: influence of adsorbed organic matter, Environ. Sci. Technol., 42 (2008) 3207–3212.