References

  1. S.B. Zaman, M.A. Hussain, R. Nye, V. Mehta, K.T. Mamun, N. Hossain, A Review on antibiotic resistance: alarm bells are ringing, Cureus, 9 (2017) 1403–1412.
  2. M.l. Farré, S. Pérez, L. Kantiani, D. Barceló, Fate and toxicity of emerging pollutants, their metabolites and transformation products in the aquatic environment, TrAC Trends Anal. Chem., 27 (2008) 991–1007.
  3. C.G. Daughton, Pharmaceutical Ingredients in Drinking Water: Overview of Occurrence and Significance of Human Exposure, in: Contaminants of Emerging Concern in the Environment: Ecological and Human Health Considerations, American Chemical Society, 2010, pp. 9–68.
  4. R.T. Williams, Human Pharmaceuticals: Assessing the Impacts on Aquatic Ecosystems, in, SETAC Press, Pensacola, FL, 2005.
  5. A.S. Giri, A.K. Golder, Ciprofloxacin degradation in photo-Fenton and photo-catalytic processes: degradation mechanisms and iron chelation, J. Environ. Sci., 80 (2019) 82–92.
  6. A. Kaur, S.K. Kansal, Bi2WO6 nanocuboids: an efficient visible light active photocatalyst for the degradation of levofloxacin drug in aqueous phase, Chem. Eng. J., 302 (2016) 194–203.
  7. J. Trawinski, R. Skibinski, Photolytic and photocatalytic degradation of the antipsychotic agent tiapride: kinetics, transformation pathways and computational toxicity assessment, J. Hazard. Mater., 321 (2017) 841–858.
  8. I. Epold, M. Trapido, N. Dulova, Degradation of levofloxacin in aqueous solutions by Fenton, ferrous ion-activated persulfate and combined Fenton/persulfate systems, Chem. Eng. J., 279 (2015) 452–462.
  9. S.K. Kansal, P. Kundu, S. Sood, R. Lamba, A. Umar, S.K. Mehta, Photocatalytic degradation of the antibiotic levofloxacin using highly crystalline TiO2 nanoparticles, New J. Chem., 38 (2014) 3220–3226.
  10. S. Sharma, A. Umar, S.K. Mehta, A.O. Ibhadon, S.K. Kansal, Solar light driven photocatalytic degradation of levofloxacin using TiO2/carbon-dot nanocomposites, New J. Chem., 42 (2018) 7445–7456.
  11. W. Guo, Y. Shi, H. Wang, H. Yang, G. Zhang, Sonochemical decomposition of levofloxacin in aqueous solution, Water Environ. Res., 82 (2010) 696–700.
  12. J. Xu, B. Feng, Y. Wang, Y. Qi, J. Niu, M. Chen, BiOCl decorated NaNbO3 nanocubes: a novel p-n heterojunction photocatalyst with improved activity for ofloxacin degradation, Front. Chem., 6 (2018) 9p, https://doi.org/10.3389/fchem.2018.00393..
  13. S. Li, Y. Liu, Y. Long, L. Mo, H. Zhang, J. Liu, Facile synthesis of Bi2MoO6 microspheres decorated by CdS nanoparticles with efficient photocatalytic removal of levfloxacin antibiotic, Catalysts, 8 (2018) 477.
  14. M.Y. Khan, M. Ahmad, S. Sadaf, S. Iqbal, F. Nawaz, J. Iqbal, Visible light active indigo dye/graphene/WO3 nanocomposites with excellent photocatalytic activity, J. Mater. Res. Technol., 8 (2019) 3261–3269.
  15. Z. Qiao, T. Yan, W. Li, B. Huang, In situ anion exchange synthesis of In2S3/In(OH)3 heterostructures for efficient photocatalytic degradation of MO under solar light, New J. Chem., 41 (2017) 3134–3142.
  16. J. Romão, D. Barata, N. Ribeiro, P. Habibovic, H. Fernandes, G. Mul, High throughput screening of photocatalytic conversion of pharmaceutical contaminants in water, Environ. Pollut., 220 (2017) 1199–1207.
  17. M. Sayed, L.A. Shah, J.A. Khan, N.S. Shah, J. Nisar, H.M. Khan, P. Zhang, A.R. Khan, Efficient photocatalytic degradation of norfloxacin in aqueous media by hydrothermally synthesized immobilized TiO2/Ti films with exposed {001} facets, J. Phys. Chem. A, 120 (2016) 9916–9931.
  18. I. Corsi, M. Winther-Nielsen, R. Sethi, C. Punta, C. Della Torre, G. Libralato, G. Lofrano, L. Sabatini, M. Aiello, L. Fiordi, F. Cinuzzi, A. Caneschi, D. Pellegrini, I. Buttino, Ecofriendly nanotechnologies and nanomaterials for environmental applications: key issue and consensus recommendations for sustainable and ecosafe nanoremediation, Ecotoxicol. Environ. Saf., 154 (2018) 237–244.
  19. H. Huang, L. Liu, Y. Zhang, N. Tian, Novel BiIO4/BiVO4 composite photocatalyst with highly improved visible light-induced photocatalytic performance for rhodamine B degradation and photocurrent generation, RSC Adv., 5 (2015) 1161–1167.
  20. L. Chen, D. Meng, X. Wu, A. Wang, J. Wang, M. Yu, Y. Liang, Enhanced visible light photocatalytic performances of self-assembled hierarchically structured BiVO4/Bi2WO6 heterojunction composites with different morphologies, RSC Adv., 6 (2016) 52300–52309.
  21. M. Palmai, E.M. Zahran, S. Angaramo, S. Balint, Z. Paszti, M.R. Knecht, L.G. Bachas, Pd-decorated m-BiVO4/BiOBr ternary composite with dual heterojunction for enhanced photocatalytic activity, J. Mater. Chem. A, 5 (2017) 529–534.
  22. Y. Hu, J. Fan, C. Pu, H. Li, E. Liu, X. Hu, Facile synthesis of double cone-shaped Ag4V2O7/BiVO4 nanocomposites with enhanced visible light photocatalytic activity for environmental purification, J. Photochem. Photobiol. A, 337 (2017) 172–183.
  23. D. Lv, D. Zhang, X. Pu, D. Kong, Z. Lu, X. Shao, H. Ma, J. Dou, One-pot combustion synthesis of BiVO4/BiOCl composites with enhanced visible-light photocatalytic properties, Sep. Purif. Technol., 174 (2017) 97–103.
  24. M. Guo, Y. Wang, Q. He, W. Wang, W. Wang, Z. Fu, H. Wang, Enhanced photocatalytic activity of S-doped BiVO4 photocatalysts, RSC Adv., 5 (2015) 58633–58639.
  25. A. Malathi, J. Madhavan, A. Muthupandian, A. Prabhakarn, A review on BiVO4 photocatalyst: activity enhancement methods for solar photocatalytic applications, Appl. Catal. A, 555 (2018) 47–74.
  26. G.G. Zhanel, S. Fontaine, H. Adam, K. Schurek, M. Mayer, A.M. Noreddin, A.S. Gin, E. Rubinstein, D.J. Hoban, A Review of new fluoroquinolones: focus on their use in respiratory tract infections, Treat Respir. Med., 5 (2006) 437–465.
  27. X.-S. Miao, F. Bishay, M. Chen, C.D. Metcalfe, Occurrence of antimicrobials in the final effluents of wastewater treatment plants in Canada, Environ. Sci. Technol., 38 (2004) 3533–3541.
  28. X. Zhang, Z. Ai, F. Jia, L. Zhang, X. Fan, Z. Zou, Selective synthesis and visible-light photocatalytic activities of BiVO4 with different crystalline phases, Mater. Chem. Phys., 103 (2007) 162–167.
  29. L. Zhou, W. Wang, S. Liu, L. Zhang, H. Xu, W. Zhu, A sonochemical route to visible-light-driven high-activity BiVO4 photocatalyst, J. Mol. Catal., A, 252 (2006) 120–124.
  30. A. Zhang, J. Zhang, N. Cui, X. Tie, Y. An, L. Li, Effects of pH on hydrothermal synthesis and characterization of visible-lightdriven BiVO4 photocatalyst, J. Mol. Catal. A, 304 (2009) 28–32.
  31. X. Meng, L. Zhang, H. Dai, Z. Zhao, R. Zhang, Y. Liu, Surfactantassisted hydrothermal fabrication and visible-light-driven photocatalytic degradation of methylene blue over multiple morphological BiVO4 single-crystallites, Mater. Chem. Phys., 125 (2011) 59–65.
  32. H. Huang, S. Tu, C. Zeng, T. Zhang, A.H. Reshak, Y. Zhang, Macroscopic polarization enhancement promoting photo- and piezoelectric-induced charge separation and molecular oxygen activation, Angew. Chem. Int. Ed., 56 (2017) 11860–11864.
  33. H. Huang, Y. He, X. Li, M. Li, C. Zeng, F. Dong, X. Du, T. Zhang, Y. Zhang, Bi2O2(OH)(NO3) as a desirable [Bi2O2]2+ layered photocatalyst: strong intrinsic polarity, rational band structure and {001} active facets co-beneficial for robust photooxidation capability, J. Mater Chem. A, 3 (2015) 24547–24556.
  34. H. Huang, X. Li, J. Wang, F. Dong, P.K. Chu, T. Zhang, Y. Zhang, Anionic group self-doping as a promising strategy: band-gap engineering and multi-functional applications of high-performance CO32–-doped Bi2O2CO3, ACS Catal., 5 (2015) 4094–4103.
  35. G. Lu, Z. Lun, H. Liang, H. Wang, Z. Li, W. Ma, In situ fabrication of BiVO4-CeVO4 heterojunction for excellent visible light photocatalytic degradation of levofloxacin, J. Alloy Compd., 772 (2019) 122–131.
  36. J.W.T. Spinks, R.J. Woods, An Introduction to Radiation Chemistry, John Wiley and Sons Inc, USA, 1990.
  37. S. Hisaindee, M.A. Meetani, M.A. Rauf, Application of LC-MS to the analysis of advanced oxidation process (AOP) degradation of dye products and reaction mechanisms, TrAC Trends Anal. Chem., 49 (2013) 31–44.