References

  1. C.I. Pearce, J.R. Lloyd, J.T. Guthrie, The removal of color from textile wastewater using whole bacterial cells: a review, Dyes Pigm., 58 (2003) 179–196.
  2. A.B. Dos Santos, F.J. Cervantes, J.B. van Lier, A review paper on current technologies for decolourization of textile wastewaters: perspectives for anaerobic biotechnology, Bioresour. Technol., 98 (2007) 2369–2385.
  3. A.G.S. Prado, J.D. Torres, E.A. Faria, S.C.L. Dias, Comparative adsorption studies of indigo carmine dye on chitin and chitosan, J. Colloid Interface Sci., 277 (2004) 43–47.
  4. M.M. Joshi, N.K. Labhsetwar, P.A. Mangrulkar, S.N. Tijare, S.P. Kamble, S.S. Rayalu, Visible light-induced photoreduction of methyl orange by N-doped mesoporous titania, Appl. Catal., A, 357 (2009) 26–33.
  5. S. Srivastava, R. Sinha, D. Roy, Toxicological effects of malachite green, Aquat. Toxicol., 66 (2004) 319–329.
  6. W. Cheng, S.-G. Wang, L. Lu, W.-X. Gong, X.-W. Liu, B.-Y. Gao, H.-Y. Zhang, Removal of malachite green (MG) from aqueous solutions by native and heat-treated anaerobic granular sludge, Biochem. Eng. J., 39 (2008) 538–546.
  7. Z. Bekçi, C. Özveri, Y. Seki, K. Yurdakoç, Sorption of malachite green on chitosan bead, J. Hazard. Mater., 154 (2008) 254–261.
  8. L.A. Pérez-Estrada, A. Agüera, M.D. Hernando, S. Malato, A.R. Fernández-Alba, Photodegradation of malachite green under natural sunlight irradiation: kinetic and toxicity of the transformation products, Chemosphere, 70 (2008) 2068–2075.
  9. M. Farhadian, M. Kazemzad, Photocatalytic degradation of malachite green by magnetic photocatalyst, Synth. React. Inorg. Met.-Org. Nano-Metal Chem., 46 (2016) 458–463.
  10. S.K. Kansal, M. Singh, D. Sud, Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts, J. Hazard. Mater., 141 (2007) 581–590.
  11. C. Hachem, F. Bocquillon, O. Zahraa, M. Bouchy, Decolourization of textile industry wastewater by the photocatalytic degradation process, Dyes Pigm., 49 (2001) 117–125.
  12. M. Barjasteh-Moghaddam, A. Habibi-Yangjeh, Effect of operational parameters on photodegradation of methylene blue on ZnS nanoparticles prepared in presence of an ionic liquid as a highly efficient photocatalyst, J. Iran. Chem. Soc., 8 (2011) S169–S175.
  13. F. Sayılkan, M. Asiltürk, P. Tatar, N. Kiraz, E. Arpac, H. Sayılkan, Photocatalytic performance of Sn-doped TiO2 nanostructured mono and double-layer thin films for Malachite Green dye degradation under UV and vis-lights, J. Hazard. Mater., 144 (2007) 140–146.
  14. N. Modirshahla, M.A. Behnajady, Photooxidative degradation of Malachite Green (MG) by UV/H2O2: Influence of operational parameters and kinetic modeling, Dyes Pigm., 70 (2006) 54–59.
  15. L. Papinutti, N. Mouso, F. Forchiassin, Removal and degradation of the fungicide dye malachite green from aqueous solution using the system wheat bran–Fomes sclerodermeus, Enzyme Microb. Technol., 39 (2006) 848–853.
  16. S. Sambasivam, D.P. Joseph, D.R. Reddy, B.K. Reddy, C.K. Jayasankar, Synthesis and characterization of thiophenol passivated Fe-doped ZnS nanoparticles, Mater. Sci. Eng., B, 150 (2008) 125–129.
  17. N. Daneshvar, M. Ayazloo, A.R. Khataee, M. Pourhassan, Biological decolorization of dye solution containing Malachite Green by microalgae Cosmarium sp., Bioresour. Technol., 98 (2007) 1176–1182.
  18. M.A. Behnajady, N. Modirshahla, M. Shokri, B. Vahid, Effect of operational parameters on degradation of Malachite Green by ultrasonic irradiation, Ultrason. Sonochem., 15 (2008) 1009–1014.
  19. M.Y. Ghaly, G. Härtel, R. Mayer, R. Haseneder, Photochemical oxidation of p-chlorophenol by UV/H2O2 and photo-Fenton process. A comparative study, Waste Manage., 21 (2001) 41–47.
  20. C.A.K. Gouvea, F. Wypych, S.G. Moraes, N. Duran, N. Nagata, P. Peralta-Zamora, Semiconductor-assisted photocatalytic degradation of reactive dyes in aqueous solution, Chemosphere, 40 (2000) 433–440.
  21. W.S. Kuo, L.N. Wu, Fenton degradation of 4-chlorophenol contaminated water promoted by solar irradiation, Sol. Energy, 84 (2010) 59–65.
  22. J. Tolia, M. Chakraborty, Z. Murthy, Photocatalytic degradation of malachite green dye using doped and undoped ZnS nanoparticles, Polish J. Chem. Technol., 14 (2012) 16–21.
  23. K.L. Ameta, N. Papnai, R. Ameta, Photocatalytic degradation of malachite green using nano-sized cerium-iron oxide, Orbital Electron. J. Chem., 6 (2014) 14–19.
  24. R. Ramachandran, M. Sathiya, K. Ramesha, A.S. Prakash, G. Madras, A.K. Shukla, Photocatalytic properties of KBiO3 and LiBiO3 with tunnel structures, J. Chem. Sci., 123 (2011) 517–524.
  25. A.R. Nanakkal, L.K. Alexander, Photocatalytic activity of graphene/ZnO nanocomposite fabricated by two-step electrochemical route, J. Chem. Sci., 129 (2017) 95–102.
  26. A. Khan, U. Alam, S. Zafar, M. Muneer, Fe (III)-grafted K-doped gC3N4/rGO composite photocatalyst with efficient activity towards the degradation of organic pollutants, J. Chem. Sci., 130 (2018) 142.
  27. J. Yan, Z. Chen, H. Ji, Z. Liu, X. Wang, Y. Xu, X. She, L. Huang, L. Xu, H. Xu, Construction of a 2D graphene-like MoS2/C3N4 heterojunction with enhanced visible‐light photocatalytic activity and photoelectrochemical activity, Chem. Eur. J., 22 (2016) 4764–4773.
  28. M. Malathi, K. Sreenu, G. Ravi, P.V. Kumar, C.H.S. Reddy, R. Guje, R. Velchuri, M. Vithal, Low-temperature synthesis of fluorite-type Ce-based oxides of composition Ln2Ce2O7 (Ln = Pr, Nd and Eu): photodegradation and luminescence studies, J. Chem. Sci., 129 (2017) 1193–1203.
  29. M.C. Hatnean, M.R. Lees, G. Balakrishnan, Growth of singlecrystals of rare-earth zirconate pyrochlores, Ln2Zr2O7 (with Ln = La, Nd, Sm, and Gd) by the floating zone technique, J. Cryst. Growth, 418 (2015) 1–6.
  30. B.P. Mandal, A.K. Tyagi, Pyrochlores: potential multifunctional materials, Barc Newsl., 313 (2010) 6–13.
  31. M.P. Pechini, Method of Preparing Lead and Alkaline Earth Titanates and Niobates and Coating Method Using The Same to Form a Capacitor, US3330697A, 1967.
  32. A.J. Carrillo, D.P. Serrano, P. Pizarro, J.M. Coronado, Design of Efficient Mn-Based Redox Materials for Thermochemical Heat Storage at High Temperatures, AIP Conf. Proc., 2016, p. 50009.
  33. P.C. Ribeiro, A.C.F. de M. Costa, R.H.G.A. Kiminami, J.M. Sasaki, H.L. Lira, Synthesis of TiO2 by the pechini method and photocatalytic degradation of methyl red, Mater. Res., 16 (2013) 468–472.
  34. A.E. Danks, S.R. Hall, Z. Schnepp, The evolution of ‘sol–gel’ chemistry as a technique for materials synthesis, Mater. Horiz., 3 (2016) 91–112.
  35. T.O.L. Sunde, T. Grande, M.-A. Einarsrud, Modified Pechini Synthesis of Oxide Powders and Thin Films, Handbook of Sol-Gel Science and Technology, T.O.L. Sunde, T. Gd. M.-A. Einarsrud, Modif. Pechini Synth. Oxide Powders Thin Film. Handb. Sol-Gel Sci. Technol., 1–30.Y., 2016, pp. 1–30.
  36. L. Zhang, J. Yang, J. Li, A novel composite cathode for intermediate temperature solid oxide fuel cell, J. Power Sources, 269 (2014) 723–726.
  37. APHA, Standard Method for Examination of Water and Wastewater, 23rd ed., American Public Health Association, 2017.
  38. T.J.B. Holland, S.A.T. Redfern, Unit cell refinement from powder diffraction data: the use of regression diagnostics, Mineral. Mag., 61 (2006) 65–77.
  39. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr., Sect. A: Found. Crystallogr., A32 (1976) 751–767.
  40. T.S. Jamil, E.S. Mansor, R.A. Nasr, Degradation of Lindane using two nanosized BiOXs and their heterojunction under visible light, 57 (2016) 14750–14761.
  41. Y. Zhang, J. Yan, Q. Li, C. Qu, L. Zhang, W. Xie, Optical and structural properties of Cu-doped β-Ga2O3 films, Mater. Sci. Eng., B, 176 (2011) 846–849.
  42. K. Sayama, H. Arakawa, Effect of Na2CO3 addition on photocatalytic decomposition of liquid water over various semiconductor catalysis, J. Photochem. Photobiol., A, 77 (1994) 243–247.
  43. K. Sayama, H. Arakawa, Effect of carbonate addition on the photocatalytic decomposition of liquid water over a ZrO2 catalyst, J. Photochem. Photobiol., A, 94 (1996) 67–76.
  44. M. Uno, A. Kosuga, M. Okui, K. Horisaka, H. Muta, K. Kurosaki, S. Yamanaka, Photoelectrochemical study of lanthanide zirconium oxides, Ln2Zr2O7 (Ln = La, Ce, Nd, and Sm), J. Alloys Compd., 420 (2006) 291–297.
  45. H.A. Abbas, T.S. Jamil, F.F. Hammad, Synthesis, characterization and photocatalytic activity of nano sized undoped and Ga doped SrTi0.7Fe0.3O3 for 2,4,6-trichlorophenol photodegradation, J. Environ. Chem. Eng., 4 (2016) 2384–2393.
  46. H.A. Abbas, T.S. Jamil, F.F. Hammad, Journal of environmental chemical engineering synthesis, characterization and photocatalytic activity of nano-sized photodegradation, Biochem. Pharmacol., 4 (2016) 2384–2393.
  47. T.S. Jamil, H.A. Abbas, R.A. Nasr, A.A. El-Kady, M.I.M. Ibrahim, Detoxification of aflatoxin B1using nano-sized Sc-doped SrTi0.7Fe0.3O3 under visible light, J. Photochem. Photobiol., A, 341 (2017) 127–135.
  48. H.A. Abbas, A.M. Youssef, F.F. Hammad, A.M.A. Hassan, Z.M. Hanafi, Electrical properties of nano-sized indium tin oxide (ITO) doped with CuO, Cr2O3 and ZrO2, J. Nanopart. Res., 16 (2014) 2518.
  49. M.C. Biesinger, L.W.M. Lau, A.R. Gerson, R.S.C. Smart, Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn, Appl. Surf. Sci., 257 (2010) 887–898.
  50. Z. Liang, L. Zhao, W. Meng, C. Zhong, S. Wei, B. Dong, Z. Xu, L. Wan, S. Wang, Tungsten-doped vanadium dioxide thin films as smart windows with self-cleaning and energy-saving functions, J. Alloys Compd., 694 (2017) 124–131.
  51. B. Yous, S. Robin, A. Donnadieu, G. Dufour, C. Maillot, H. Roulet, C. Senemaud, Chemical vapor deposition of tungsten oxides: a comparative study by X-ray photoelectron spectroscopy, X-ray diffraction and reflection high energy electron diffraction, Mater. Res. Bull., 19 (1984) 1349–1354.
  52. S.E.A.S. El-deen, N.S. Ammar, T.S. Jamil, Adsorption behavior of Co (II) and Ni (II) from an aqueous solutions onto titanate nanotubes, 24 (2016) 455–466.
  53. M.A. Rauf, M.A. Meetani, S. Hisaindee, An overview on the photocatalytic degradation of azo dyes in the presence of TiO2 doped with selective transition metals, Desalination, 276 (2011) 13–27.
  54. R. Rathore, R. Ameta, S.C. Ameta, Photocatalytic degradation of malachite green over nickel vanadate powder, 4 (2014) 213–220.
  55. T.S. Jamil, H.A. Abbas, R.A. Nasr, R.-N. Vannier, Visible light activity of BaFe1-xCuxO3-δ as photocatalyst for atrazine degradation, Ecotoxicol. Environ. Saf., 163 (2018) 620–628.
  56. S.K. Ray, D. Dhakal, S.W. Lee, Insight into malachite green degradation, Mechanism and pathways by morphology-tuned a -NiMoO4 photocatalyst, 4 (2018) 552–563.
  57. G.A.O. Guandao, Z. Aiyong, Z. Meng, C. Jinlong, Z. Quanxing, Photocatalytic degradation mechanism of malachite green under visible light irradiation over novel biomimetic photocatalyst HMS-FePcs, Chin. J. Catal., 29 (2008) 426–430.
  58. X. Meng, Z. Zhang, Synthesis, analysis, and testing of BiOBr-Bi2WO6 photocatalytic heterojunction semiconductors, Int. J. Photoenergy, 2015 (2015), https://doi.org/10.1155/2015/630476.