References

  1. A. Alver, L. Altaş, Characterization and electrocoagulative treatment of landfill leachates: a statistical approach, Process Saf. Environ., 111 (2017) 102–111.
  2. M. Banar, A. Özkan, M. Kürkçüoğlu, Characterization of the leachate in an urban landfill by physicochemical analysis and solid-phase microextraction-GC/MS, Environ. Monit. Assess., 121 (2006) 437–457.
  3. S. Renoua, J.G. Givaudan, S. Poulain, F. Dirassouyan, P. Moulin, Landfill leachate treatment: review and opportunity, J. Hazard. Mater., 150 (2008) 468–493.
  4. L.G. Miao, T. Tao, Y. Peng, Recent advances in nitrogen removal from landfill leachate using biological treatments – a review, J. Environ. Manage., 235 (2019) 178–185.
  5. S. He, Y. Zhang, M. Yang, W. Du, H. Harada, Repeated use of MAP decomposition residues for the removal of high ammonium concentration from landfill leachate, Chemosphere, 66 (2007) 2233–2238.
  6. H. Huang, D. Xiao, Q. Zhang, L. Ding, Removal of ammonia from landfill leachate by struvite precipitation with the use of low-cost phosphate and magnesium sources, J. Environ. Manage., 145 (2014) 191–198.
  7. İ. Ozturk, M. Altinbas, I. Koyuncu, O. Arikan, Ç.G. Yangin, Advanced physico-chemical treatment experiences on young municipal landfill leachates, Waste Manage., 23 (2003) 441–446.
  8. Z. Wang, J. Li, W. Tan, X. Wu, H. Lin, H. Zhang, Removal of COD from landfill leachate by advanced Fenton process combined with electrolysis, Sep. Purif. Technol., 208 (2019) 3–11.
  9. T. Zhang, L. Ding, H. Ren, Pretreatment of ammonium removal from landfill leachate by chemical precipitation, J. Hazard. Mater., 166 (2009) 911–915.
  10. C. Di Iaconi, M. Pagano, R. Ramadori, A. Lopez, Nitrogen recovery from a stabilized municipal landfill leachate, Bioresour. Technol., 101 (2010) 1732–1736.
  11. I. Kabdaşlı, A. Şafak, O. Tünay, Bench-scale evaluation of treatment schemes incorporating struvite precipitation for young landfill leachate, Waste Manage., 28 (2008) 2386–2392.
  12. I. Kabdaşlı, O. Tünay, Nutrient recovery by struvite precipitation, ion exchange and adsorption from source-separated human urine – a review, Environ. Technol. Rev., 7 (2018) 106–138.
  13. D. Crutchik, J.M. Garrido, Kinetics of the reversible reaction of struvite crystallization, Chemosphere, 154 (2016) 567–572.
  14. X.Z. Li, Q.L. Zhao, Recovery of ammonium-nitrogen from landfill leachate as a multi-nutrient fertilizer, Ecol. Eng., 20 (2003) 171–181.
  15. International Centre for Diffraction Data, Ammonium Magnesium Phosphate Hydrate (Standard #15-0762), A Computer Database, 1996.
  16. APHA, Standard Methods for the Examination of Water and Wastewater, 20th ed., American Public Health Association, Washington, 1998.
  17. http://uregina.ca/~gingrich/regr.pdf, accessed in 08.13.2018.
  18. http://personal.cb.cityu.edu.hk/msawan/teaching/FB8916/ FB8916Ch1.pdf accessed in 08.13.2018.
  19. http://www.mit.edu/~6.s085/notes/lecture3.pdf, accessed in 08.13.2018.
  20. G.X. He, L.H. He, Z.W. Zhao, X.Y. Chen, L.L. Gao, X.H. Liu, Thermodynamic study on phosphorus removal from tungstate solution via magnesium salt precipitation method, Trans. Nonferrous Met. Soc. China, 23 (2013) 3440−3447.
  21. O. Yenigün, B. Demirel, Ammonia inhibition in anaerobic digestion: a review, Process Biochem., 48 (2013) 901–911.
  22. M. Öztürk, Magnezyum Amonyum Fosfat (MAP) Çöktürmesi ile Atıksulardan Azot ve Fosfor Giderimi, Master’s thesis, Cumhuriyet Unv. Institute of Science and Technology, Sivas, 2006.
  23. H. Lin, Y. Lin, D. Wang, Y. Pang, S. Tan, Ammonium removal from digested effluent of swine wastewater by using solid residue from magnesium-hydroxide flue gas desulfurization process, J. Ind. Eng. Chem., 58 (2018) 148–154.
  24. D.C. Montgomery, G.C. Runger, N.F. Hubele, Engineering Statistics, John Wiley & Sons, Inc., New York, 2001.