References
- J.-L. Liu, M.-H. Wong, Pharmaceuticals and personal care
products (PPCPs): a review on environmental contamination in
China, Environ. Int., 59 (2013) 208–224.
- Y.F. Velázquez, P.M. Nacheva, Removal of pharmaceuticals
from municipal wastewater by aerated submerged attached
growth reactors, J. Environ. Manage., 192 (2017) 243–253.
- L. Feng, E.D. Van Hullebusch, M.A. Rodrigo, G. Esposito, M.A.
Oturan, Removal of residual anti-inflammatory and analgesic
pharmaceuticals from aqueous systems by electrochemical
advanced oxidation processes. A review, Chem. Eng. J.,
228 (2013) 944–964.
- E. Chang, T.-Y. Liu, C.-P. Huang, C.-H. Liang, P.-C. Chiang,
Degradation of mefenamic acid from aqueous solutions by the
ozonation and O3/UV processes, Sep. Purif. Technol., 98 (2012)
123–129.
- A. Eslami, M.M. Amini, A.R. Yazdanbakhsh, N. Rastkari,
A. Mohseni-Bandpei, S. Nasseri, E. Piroti, A. Asadi, Occurrence
of non-steroidal anti-inflammatory drugs in Tehran source
water, municipal and hospital wastewaters, and their ecotoxicological
risk assessment, Environ. Monit. Assess., 187 (2015)
734.
- H. Abdolmohammad-Zadeh, F. Morshedzadeh, E. Rahimpour,
Trace analysis of mefenamic acid in human serum and
pharmaceutical wastewater samples after pre-concentration
with Ni–Al layered double hydroxide nano-particles, J. Pharm.
Anal., 4 (2014) 331–338.
- J.J. Werner, K. McNeill, W.A. Arnold, Environmental
photodegradation of mefenamic acid, Chemosphere, 58 (2005)
1339–1346.
- R. Colombo, T.C. Ferreira, R.A. Ferreira, M.R. Lanza, Removal
of Mefenamic acid from aqueous solutions by oxidative
process: optimization through experimental design and HPLC/UV analysis, J. Environ. Manage., 167 (2016) 206–213.
- D. Kanakaraju, B.D. Glass, M. Oelgemöller, Advanced oxidation
process-mediated removal of pharmaceuticals from water:
a review, J. Environ. Manage., 219 (2018) 189–207.
- K. Ikehata, N. Jodeiri Naghashkar, M. Gamal El-Din, Degradation
of aqueous pharmaceuticals by ozonation and advanced
oxidation processes: a review, Ozone Sci. Eng., 28 (2006) 353–414.
- S. Ghasemian, D. Nasuhoglu, S. Omanovic, V. Yargeau, Photoelectrocatalytic
degradation of pharmaceutical carbamazepine
using Sb-doped Sn80%-W20%-oxide electrodes, Sep. Purif. Technol.,
188 (2017) 52–59.
- R. Banaschik, H. Jablonowski, P.J. Bednarski, J.F. Kolb,
Degradation and intermediates of diclofenac as instructive
example for decomposition of recalcitrant pharmaceuticals
by hydroxyl radicals generated with pulsed corona plasma in
water, J. Hazard. Mater., 342 (2018) 651–660.
- P. Duan, X. Hu, Z. Ji, X. Yang, Z. Sun, Enhanced oxidation
potential of Ti/SnO2-Cu electrode for electrochemical degradation
of low-concentration ceftazidime in aqueous solution:
performance and degradation pathway, Chemosphere, 212 (2018)
594–603.
- F.C. Moreira, R.A. Boaventura, E. Brillas, V.J. Vilar, Electrochemical
advanced oxidation processes: a review on their
application to synthetic and real wastewaters, Appl. Catal., B,
202 (2017) 217–261.
- C. Zhang, M. Zhou, G. Ren, X. Yu, L. Ma, J. Yang, F. Yu,
Heterogeneous electro-Fenton using modified iron–carbon as
catalyst for 2, 4-dichlorophenol degradation: influence factors,
mechanism and degradation pathway, Water Res., 70 (2015)
414–424.
- L. Labiadh, M.A. Oturan, M. Panizza, N.B. Hamadi, S. Ammar,
Complete removal of AHPS synthetic dye from water using
new electro-Fenton oxidation catalyzed by natural pyrite as
heterogeneous catalyst, J. Hazard. Mater., 297 (2015) 34–41.
- E. Brillas, I. Sirés, M.A. Oturan, Electro-Fenton process and
related electrochemical technologies based on Fenton’s reaction
chemistry, Chem. Rev., 109 (2009) 6570–6631.
- B. Zhang, Y. Hou, Z. Yu, Y. Liu, J. Huang, L. Qian, J. Xiong,
Three-dimensional electro-Fenton degradation of Rhodamine
B with efficient Fe-Cu/kaolin particle electrodes: electrodes
optimization, kinetics, influencing factors and mechanism,
Sep. Purif. Technol., 210 (2019) 60–68.
- H. Chen, Y. Feng, N. Suo, Y. Long, X. Li, Y. Shi, Y. Yu, Preparation
of particle electrodes from manganese slag and its degradation
performance for salicylic acid in the three-dimensional electrode
reactor (TDE), Chemosphere, 216 (2019) 281–288.
- F. Iranpour, H. Pourzamani, N. Mengelizadeh, P. Bahrami,
H. Mohammadi, Application of response surface methodology
for optimization of reactive black 5 removal by three
dimensional electro-Fenton process, J. Environ. Chem. Eng.,
6 (2018) 3418–3435.
- Z. He, C. Gao, M. Qian, Y. Shi, J. Chen, S. Song, Electro-
Fenton process catalyzed by Fe3O4 magnetic nanoparticles
for degradation of CI Reactive Blue 19 in aqueous solution:
operating conditions, influence, and mechanism, Ind. Eng.
Chem. Res., 53 (2014) 3435–3447.
- C. Zhang, M. Zhou, G. Ren, X. Yu, L. Ma, J. Yang, F. Yu,
Heterogeneous electro-Fenton using modified iron–carbon as
catalyst for 2,4-dichlorophenol degradation: Influence factors,
mechanism and degradation pathway, Water Res., 70 (2015)
414–424.
- N. Qiao, H. Ma, M. Hu, Design of a neutral three-dimensional
electro-Fenton system with various bentonite-based Fe particle
electrodes: a comparative study, Mater. Res. Innov., 19 (2015)
S2–137-S132–141.
- H.-Y. Xu, Y. Wang, T.-N. Shi, H. Zhao, Q. Tan, B.-C. Zhao,
X.-L. He, S.-Y. Qi, Heterogeneous Fenton-like discoloration of
methyl orange using Fe3O4/MWCNTs as catalyst: combination
mechanism and affecting parameters, Front. Mater. Sci., 12 (2018)
21–33.
- H. Pourzamani, N. Mengelizadeh, Y. Hajizadeh, H. Mohammadi,
Electrochemical degradation of diclofenac using threedimensional
electrode reactor with multi-walled carbon
nanotubes, Environ. Sci. Pollut. Res., 25 (2018) 24746–24763.
- H. Lee, H.-J. Lee, J. Jeong, J. Lee, N.-B. Park, C. Lee, Activation
of persulfates by carbon nanotubes: oxidation of organic
compounds by nonradical mechanism, Chem. Eng. J., 266 (2015)
28–33.
- X. Zhang, M. Feng, R. Qu, H. Liu, L. Wang, Z. Wang, Catalytic
degradation of diethyl phthalate in aqueous solution by
persulfate activated with nano-scaled magnetic CuFe2O4/MWCNTs, Chem. Eng. J., 301 (2016) 1–11.
- S.M. El‐Khouly, N.A. Fathy, Multi‐walled carbon nanotubes
supported amorphous Fe2O3 and Ag2O–Fe2O3 as Fenton
catalysts for degradation of m axilon red dye, Asia-Pac. J. Chem.
Eng., 13 (2018) e2184.
- J. Chen, L. Zhang, T. Huang, W. Li, Y. Wang, Z. Wang,
Decolorization of azo dye by peroxymonosulfate activated
by carbon nanotube: radical versus non-radical mechanism,
J. Hazard. Mater., 320 (2016) 571–580.
- L. Shen, P. Yan, X. Guo, H. Wei, X. Zheng, Three-dimensional
electro-Fenton degradation of methyleneblue based on the
composite particle electrodes of carbon nanotubes and nano-Fe3O4, Arabian J. Sci. Eng., 39 (2014) 6659–6664.
- F. Yu, Y. Chen, H. Ma, Ultrahigh yield of hydrogen peroxide
and effective diclofenac degradation on a graphite felt cathode
loaded with CNTs and carbon black: an electro-generation
mechanism and a degradation pathway, New J. Chem., 42 (2018)
4485–4494.
- H. Pourzamani, Y. Hajizadeh, N. Mengelizadeh, Application of
three-dimensional electro-Fenton process using MWCNTs-Fe3O4
nanocomposite for removal of diclofenac, Process Saf. Environ.
Prot., 119 (2018) 271–284.
- I. Pouladvand, S.K. Asl, M.G. Hoseini, M. Rezvani, Technology,
characterization and electrochemical behavior of Ti/TiO2–RuO2–IrO2–SnO2 anodes prepared by sol–gel process, J. Solgel
Sci. Technol., 89 (2019) 553–561.
- F. Moradi, C. Dehghanian, Addition of IrO2 to RuO2 + TiO2
coated anodes and its effect on electrochemical performance of
anodes in acid media, Prog. Nat. Sci. Mater., 24 (2014) 134–141.
- C.-P. Lo, G. Wang, A. Kumar, V. Ramani, TiO2–RuO2 electrocatalyst
supports exhibit exceptional electrochemical stability,
Appl. Catal., B, 140 (2013) 133–140.
- S. Kim, S.K. Choi, B.Y. Yoon, S.K. Lim, H. Park, Effects of
electrolyte on the electrocatalytic activities of RuO2/Ti and Sb–SnO2/Ti anodes for water treatment, Appl. Catal., B, 97 (2010)
135–141.
- T. Saranya, K. Parasuraman, M. Anbarasu, K. Balamurugan,
XRD, FT-IR and SEM study of magnetite (Fe3O4) nanoparticles
prepared by hydrothermal method, Nano Vision, 5 (2015)
149–154.
- C. García-Gómez, P. Drogui, F. Zaviska, B. Seyhi, P. Gortáres-Moroyoqui, G. Buelna, C. Neira-Sáenz, M. Estrada-Alvarado,
R. Ulloa-Mercado, Experimental design methodology applied
to electrochemical oxidation of carbamazepine using Ti/PbO2
and Ti/BDD electrodes, J. Electroanal. Chem., 732 (2014) 1–10.
- H. Yue, L. Xue, F. Chen, Efficiently electrochemical removal
of nitrite contamination with stable RuO2-TiO2/Ti electrodes,
Appl. Catal., B, 206 (2017) 683–691.
- M. Panizza, M.A. Oturan, Degradation of Alizarin Red by
electro-Fenton process using a graphite-felt cathode, Electrochim.
Acta, 56 (2011) 7084–7087.
- H. Mohammadi, B. Bina, A. Ebrahimi, A novel three-dimensional
electro-Fenton system and its application for degradation of
anti-inflammatory pharmaceuticals: modeling and degradation
pathways, Process Saf. Environ. Prot., 117 (2018) 200–213.
- Q. Tang, D. Wang, D. Yao, C. Yang, Y. Sun, Heterogeneous
electro-Fenton oxidation of p-nitrophenol with a reusable fluffy
clump steel wire, Desal. Wat. Treat., 57 (2016) 15475–15485.
- B. Manu, R. Mahamood, Degradation kinetics of diclofenac
in water by Fenton’s oxidation, J. Sustain. Energy Environ.,
3 (2012) 173–176.
- P. Nidheesh, R. Gandhimathi, S. Velmathi, N. Sanjini, Magnetite
as a heterogeneous electro Fenton catalyst for the removal
of Rhodamine B from aqueous solution, RSC Adv., 4 (2014)
5698–5708.
- Z. Es› haghzade, E. Pajootan, H. Bahrami, M. Arami, Facile
synthesis of Fe3O4 nanoparticles via aqueous based electro
chemical route for heterogeneous electro-Fenton removal of
azo dyes, J. Taiwan Inst. Chem. Eng., 71 (2017) 91–105.
- A. Özcan, A.A. Özcan, Y. Demirci, E. Şener, Preparation of
Fe2O3 modified kaolin and application in heterogeneous
electro-catalytic oxidation of enoxacin, Appl. Catal., B, 200
(2017) 361–371.
- H. Pourzamani, H. Mohammadian, N. Niknam, B. Neamati,
R. Rahimi, N. Mengelizadeh, Comparison of electrochemical
advanced oxidation processes for removal of ciprofloxacin from
aqueous solutions, Desal. Wat. Treat., 113 (2018) 307–318.
- A. Shirzadi, A. Nezamzadeh-Ejhieh, Enhanced photocatalytic
activity of supported CuO–ZnO semiconductors towards the
photodegradation of mefenamic acid aqueous solution as a
semi real sample, J. Mol. Catal. A-Chem., 411 (2016) 222–229.
- X. Wang, K. Zhu, X. Ma, Z. Sun, X. Hu, Degradation of diuron
by heterogeneous electro-Fenton using modified magnetic
activated carbon as the catalyst, RSC Adv., 8 (2018) 19971–19978.
- C. Zhang, M. Zhou, X. Yu, L. Ma, F. Yu, Modified iron-carbon
as heterogeneous electro-Fenton catalyst for organic pollutant
degradation in near neutral pH condition: characterization,
degradation activity and stability, Electrochim. Acta, 160 (2015)
254–262.
- Riyanto, A. Anshori, Electroanalysis of mefenamic acid using
platinum powder composite microelectrode (PPCM), Anal.
Bioanal. Chem., 6 (2014) 159–169.
- W.N.A.W. Khalit, K.S. Tay, Aqueous chlorination of mefenamic
acid: kinetics, transformation by-products and ecotoxicity
assessment, Environ. Sci. Process. Impact., 18 (2016) 555–561.