References

  1. National Bureau of Statistics and Ministry of Ecology and Environment, China Statistical Yearbook on Environment, China Statistics Press, Beijing, 2019.
  2. X.H. Dai, L.L. Dai, N.N. Duan, Scientific and technological innovation provides countermeasures for green and lowcarbon development of sludge in China, Constr. Sci. Technol., 1 (2017) 48–50. (in Chinese).
  3. W.T. Wong, W.I. Chan, P. Liao, K.V. Lo, A hydrogen peroxide/ microwave advanced oxidation process for sewage sludge treatment, J. Environ. Sci. Health., Part A, 41 (2006) 2623–2633.
  4. S. Saby, M. Djafer, G.H. Chen, Feasibility of using a chlorination step to reduce excess sludge in activated sludge process, Water Res., 36 (2002) 656–666.
  5. Y. Wang, Q. Xiao, J. Liu, H. Yan, Y. Wei, Pilot-scale study of sludge pretreatment by microwave and sludge reduction based on lysis–cryptic growth, Bioresour. Technol., 190 (2015) 140–147.
  6. P. Romero, M.D. Coello, J.M. Quiroga, C.A. Aragón, Overview of sewage sludge minimization: techniques based on cell lysis–cryptic growth, Desal. Wat. Treat., 51 (2013) 5918–5933.
  7. Y. Liu, Chemically reduced excess sludge production in the activated sludge process, Chemosphere, 50 (2003) 1–7.
  8. C.A. Mason, G. Hamer, J.D. Bryers, The death, and lysis of microorganisms in environmental processes, FEMS Microbiol. Rev., 39 (1986) 373–401.
  9. Y. Wei, R.T.V. Houten, A.R. Borger, D.H. Eikelboom, Y. Fan, Minimization of excess sludge production for biological wastewater treatment, Water Res., 37 (2003) 4453–4467.
  10. A. Khursheed, A.A. Kazmi, Retrospective of ecological approaches to excess sludge reduction, Water Res., 45 (2011) 4287–4310.
  11. R. Tan, K. Miyanaga, K. Toyama, D. Uy, Y. Tanji, Changes in composition and microbial communities in excess sludge after heat-alkaline treatment and acclimation, Biochem. Eng. J., 52 (2010) 151–159.
  12. I. Lee, P. Parameswaran, J.M. Alder, B.E. Rittmann, Feasibility of focused-pulsed treated waste activated sludge as a supplemental electron donor for denitrification, Water Environ. Res., 82 (2010) 2316–2324.
  13. Y. Liu, H.L. Wang, Y.X. Xu, Y.Y. Fang, X.R. Chen, Sludge disintegration using a hydrocyclone to improve biological nutrient removal and reduce excess sludge, Sep. Purif. Technol., 177 (2017) 192–199.
  14. Y.Y. Yan, L.Y. Feng, C.J. Zhang, C. Wisniewski, Q. Zhou, Ultrasonic enhancement of waste activated sludge hydrolysis and volatile fatty acids accumulation at pH 10.0, Water Res., 44 (2010) 3329–36.
  15. K. Oshita, M. Fujime, M. Takaok, T. Fujimori, L. Appels, R. Dewil, Siloxane removal and sludge disintegration using thermo-alkaline treatments with air stripping prior to anaerobic sludge digestion, Energy Convers. Manage., 96 (2015) 384–391.
  16. J.S. Ventura, S. Seo, I. Chung, I. Yeom, H. Kim, Y. Oh, D. Jahng, Enhanced reduction of excess sludge and nutrient removal in a pilot-scale A2O-MBR-TAD system, Water Sci. Technol., 63 (2011) 1547–1556.
  17. X.X. Li, K. Xu, W.C. Fu, J. Wang, Y. Zhu, C. Li, X.H. Zhou, Simultaneous in-situ excess sludge reduction and removal of organic carbon and nitrogen by a pilot-scale continuous aerobicanaerobic coupled (CAAC) process for deeply treatment of soybean wastewater, Biochem. Eng. J., 85 (2014) 30–37.
  18. Y. Sakai, T. Fukase, H. Yasui, M. Shibata, An activated sludge process without excess sludge production, Water Sci. Technol., 36 (1997) 163–170.
  19. C.G. Liu, B. Wu, X.E. Chen, Sulfate radical-based oxidation for sludge treatment: a review, Chem. Eng. J., 335 (2018) 865–875.
  20. J.H. Jang, J.H. Ahn, Effect of microwave pretreatment in presence of NaOH on mesophilic anaerobic digestion of thickened waste activated sludge, Bioresour. Technol., 131 (2013) 437–442.
  21. V.K. Tyagi, S.-L. Lo, Application of physico-chemical pretreatment methods to enhance the sludge disintegration and subsequent anaerobic digestion: an up to date review, Rev. Environ. Sci. Biotechnol., 10 (2011) 215–242.
  22. D.A. Jones, T.P. Lelyveld, S.D. Mavrofidis, S.W. Kingman, N.J. Miles, Microwave heating applications in environmental engineering-a review, Resour. Conserv. Recycl., 34 (2002) 75–90.
  23. J.A. Menéndez, A. Domínguez, M. Inguanzo, J.J. Pis, Microwaveinduced drying, pyrolysis and gasification (MWDPG) of sewage sludge: vitrification of the solid residue, J. Anal. Appl. Pyrolysis, 74 (2005) 406–412.
  24. V.K. Tyagi, S.-L. Lo, Microwave irradiation: a sustainable way for sludge treatment and resource recovery, Renewable Sustainable Energy Rev., 18 (2013) 288–305.
  25. J.A. Menéndez, M. Inguanzo, J.J. Pis, Microwave-induced pyrolysis of sewage sludge, Water Res., 36 (2002) 3261–3264.
  26. D.D. Sun, Y.N. Wang, J. Song, W.P. Xue, X.L. Dong, C. Ma, X.X. Zhang, Reduction of sludge by microwave-induced catalytic oxidation, Environ. Pollut. Control., 32 (2010) 53–57. (in Chinese).
  27. E. Egemen, J. Corpening, J. Padilla, R. Brennan, N. Nirmalakhandan, Evaluation of ozonation and cryptic growth for biosolids management in wastewater treatment, Water Sci. Technol., 39 (1999) 155–158.
  28. SEPA, Standard Methods for Examination of Water and Wastewater, State Environmental Protection Administration, Chinese Environmental Science Press, China, 2002.
  29. S. Deleris, V. Geaugey, P. Camacho, H. Debellefontaine, E. Paul, Minimization of sludge production in biological processes: an alternative solution for the problem of sludge disposal, Water Sci. Technol., 46 (2002) 63–70.
  30. H.J. Ma, S.T. Zhang, X.B. Lu, B. Xi, X.L. Guo, H. Wang, J.X. Duan, Excess sludge reduction using pilot-scale lysis-cryptic growth system integrated ultrasonic/alkaline disintegration and hydrolysis/acidogenesis pretreatment, Bioresour. Technol., 116 (2012) 441–447.
  31. D.D. Sun, S.X. Guo, N.N. Ma, G.W. Wang, C. Ma, J. Hao, M. Xue, X.X. Zhang, Sewage sludge pretreatment by microwave irradiation combined with activated carbon fiber at alkaline pH for anaerobic digestion, Water Sci. Technol., 73 (2016) 2882–2887.
  32. X. Quan, Y.B. Zhang, S. Chen, Y.Z. Zhao, F.L. Yang, Generation of hydroxyl radical in aqueous solution by microwave energy using activated carbon as catalyst and its potential in removal of persistent organic substances, J. Mol. Catal. A: Chem., 263 (2007) 216–222.
  33. A. Fortuny, J. Font, A. Fabregat, Wet air oxidation of phenol using active carbon as catalyst, Appl. Catal., B, 19 (1998) 165–173.
  34. J.H. Booske, R.F. Cooper, I. Dobson, Mechanisms for nonthermal effects on ionic mobility during microwave processing of crystalline solids, J. Mater. Res., 7 (1992) 495–501.
  35. M.A. Dytczak, K.L. Londry, H. Siegrist, J.A. Oleszkiewicz, Ozonation reduces sludge production and improves denitrification, Water Res., 41 (2007) 543–550.
  36. G.H. Wang, J. Sui, H.S. Shen, S.K. Liang, X.M. He, M.J. Zhang, Y.Z. Xie, L.Y. Li, Y.Y. Hu, Reduction of excess sludge production in sequencing batch reactor through incorporation of chlorine dioxide oxidation, J. Hazard. Mater., 192 (2011) 93–98.
  37. L.B. Chu, S.T. Yan, X.H. Xing, A.F. Yu, X.L. Sun, B. Jurcik, Enhanced sludge solubilization by microbubble ozonation, Chemosphere, 72 (2008) 205–212.
  38. S. Doğruel, M. Sievers, F. Germirli-Babuna, Effect of ozonation on biodegradability characteristics of surplus activated sludge, Ozone Sci. Eng., 29 (2007) 191–199.
  39. M. Böhler, H. Siegrist, Partial ozonation of activated sludge to reduce excess sludge, improve denitrification and control scumming and bulking, Water Sci. Technol., 49 (2004) 41–49.