References

  1. Commission of European Communities. Communication No. 398, 2014. Towards a Circular Economy: A Zero Waste Programme for Europe (COM no. 398, 2014).
  2. Commission of European Communities. Communication No. 614, 2015. Closing the Loop - An EU Action Plan for the Circular Economy (COM no. 614, 2015).
  3. Commission of European Communities. Communication No. 2020, 2010. A Strategy for Smart, Sustainable and Inclusive Growth Europe 2020 (COM no. 2020, 2010).
  4. Commission of European Communities. Communication No. 29, 2018. Monitoring Framework for the circular Economy (COM no. 29, 2018).
  5. M. Geissdoerfer, P. Savaget, N.M. Bocken, E.J. Hultink, The Circular Economy–A new sustainability paradigm?, J. Clean. Prod., 143 (2017) 757–768.
  6. M. Smol, J. Kulczycka, A. Avdiushchenko. Circular economy indicators in relation to eco-innovation in European regions, Clean Technol. Environ., 19 (2017) 669–678.
  7. Y. Geng, J. Fu, J. Sarkis, B. Xue. Towards a national circular economy indicator system in China: an evaluation and critical analysis, J. Clean. Prod., 23 (2012) 216–224.
  8. A.J. Toth, E. Haáz, T. Nagy, A.J. Tarjani, D. Fozer, A. André, N. Valentinyi, P. Mizsey, Novel method for the removal of organic halogens from process wastewaters enabling water reuse, Desal. Wat. Treat., 120 (2018) 1–28.
  9. B. Macherzyński, M. Włodarczyk-Makuła, A. Nowacka, Desorption of PAHs from solid phase into liquid phase during co-fermentation of municipal and coke sewage sludge, Desal Wat. Treat., 52 (2014) 3859–3870.
  10. M. Bodzek, M. Dudziak, K. Luks-Betlej, Application of membrane techniques to water purification. Removal of phthalates. Desalination, 162 (2004) 121–128.
  11. L. Egle, H. Rechberger, J. Krampe, M. Zessner, Phosphorus recovery from municipal wastewater: an integrated comparative technological, environmental and economic assessment of P recovery technologies, Sci. Total Environ., 571 (2016) 522–542.
  12. B. Cieślik, P. Konieczka, A review of phosphorus recovery methods at various steps of wastewater treatment and sewage sludge management. The concept of “no solid waste generation” and analytical methods, J. Clean. Prod., 142 (2017) 1728–1740.
  13. N. Martí, R. Barat, A. Seco, L. Pastor, A. Bouzas. Sludge management modeling to enhance P-recovery as struvite in wastewater treatment plants, J. Environ. Manage., 196 (2017) 340–346.
  14. S. Hukari, L. Hermann, A. Nättorp, From wastewater to fertilisers—technical overview and critical review of European legislation governing phosphorus recycling, Sci. Total Environ., 542 (2016) 1127–1135.
  15. H. Herzel, O. Krüger, L. Hermann, C. Adam Sewage sludge ash—a promising secondary phosphorus source for fertilizer production, Sci. Total Environ., 542 (2016) 1136–1143.
  16. A. Amann, O. Zoboli, J. Krampe, H. Rechberger, M. Zessner, L. Egle, Environmental impacts of phosphorus recovery from municipal wastewater, Resour. Conserv. Recyl., 130 (2018) 127–139.
  17. L. Egle, H. Rechberger, M. Zessner, Overview and description of technologies for recovering phosphorus from municipal wastewater, Resour. Conserv. Recyl., 105 (2015) 325–346.
  18. Commission of European Communities. Communication on the Circular Economy Package. Proposal for a Regulation of the European Parliament and of the Council laying down rules on the making available on the market of CE marked fertilising products and amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 (COM no. 157, 2016).
  19. M. Kasprzyk, M. Gajewska, S. Molendowska, Possibilities of phosphorus recovery from effluents, sewage sludge and ashes from sewage sludge thermal processing, Ecol. Eng., 18 (2017) 65–78 (in Polish).
  20. O. Krüger, K.P. Fattah, C. Adam, Phosphorus recovery from the wastewater stream—necessity and possibilities, Desal Wat. Treat., 57 (2016) 15619–15627.
  21. C. Kabbe, Circular Economy: Bridging the Gap Between Phosphorus Recovery and Recycling, In Phosphorus Recovery and Recycling, Springer, Singapore, 2019, pp. 45–57.
  22. G. Herczeg, R. Akkerman, M.Z. Hauschild, Supply chain collaboration in industrial symbiosis networks, J. Clean. Prod., 171 (2018) 1058–1067.
  23. M. Smol, J. Kulczycka, Z. Kowalski, Sewage sludge ash (SSA) from large and small incineration plants as a potential source of phosphorus–Polish case study, J. Environ. Manage., 184 (2016) 617–628.
  24. Regulation (EU) 2019/1009 of the European Parliament and of the Council of 5 June 2019 laying down rules on the making available on the market of EU fertilising products and amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 and repealing Regulation (EC) No 2003/2003.
  25. Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain Directives.
  26. Commission of European Communities. Communication No. 490, 2017. Communication on the 2017 list of Critical Raw Materials for the EU (COM no. 490, 2017).
  27. A. Nättorp C. Kabbe K. Matsubae, H. Ohtake, Development of Phosphorus Recycling in Europe and Japan, In: H. Ohtake, S. Tsuneda, Eds., Phosphorus Recovery and Recycling, Springer, Singapore, 2019.
  28. M. Jedelhauser, J. Mehr, C. Binder, Transition of the Swiss phosphorus system towards a circular economy—Part 2: Sociotechnical scenarios, Sustainability, 10 (2018) 1980.
  29. German Resource Efficiency Programme II, Programme for the sustainable use and conservation of natural resources, Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety (BMUB), Berlin, 2016.
  30. J. Mehr, M. Jedelhauser, C. Binder, Transition of the Swiss phosphorus system towards a circular economy—Part 1: Current state and historical developments, Sustainability, 10 (2018) 1479.
  31. Roadmap Transformation towards a circular economy. Ministry of Development. Warsaw 2018 (Roadmap Transformation towards a circular economy, 2018) (in Polish).
  32. O. Krüger, C. Adam, Recovery potential of German sewage sludge ash, Waste Manage., 45 (2015) 400–406.
  33. O. Krüger, C. Adam, Phosphorus in recycling fertilizeranalytical challenges, Environ. Res., 155 (2017) 353–358.
  34. M. Smol, A. Henclik, J. Kulczycka, B. Tarko, K. Gorazda, Z. Wzorek, Sewage Sludge Ash (SSA) as a Phosphate Fertilizer in the Aspect of Legal Regulations, In Wastes: Solutions, Treatments and Opportunities-Selected Papers from the 3rd Edition of the International Conference on Wastes: Solutions, Treatments and Opportunities, 2015, pp. 323–328.
  35. M. Lee, D.J. Kim, Identification of phosphorus forms in sewage sludge ash during acid pre-treatment for phosphorus recovery by chemical fractionation and spectroscopy, J. Ind. Eng. Chem., 51 (2017) 64–70.
  36. R. ParésViader, P.E. Jensen, L.M. Ottosen, T.P. Thomsen, J. Ahrenfeldt, H. Hauggaard-Nielsen, Comparison of phosphorus recovery from incineration and gasification sewage sludge ash, Water Sci. Technol., 75 (2017) 1251–1260.
  37. K. Zhou, M. Barjenbruch, C. Kabbe, G. Inial, C. Remy, Phosphorus recovery from municipal and fertilizer wastewater: China’s potential and perspective, J. Environ. Sci., 52 (2017) 151–159.
  38. M. Villen-Guzman, P. Guedes, N. Couto, L.M. Ottosen, A.B. Ribeiro, J.M. Rodriguez-Maroto, Electrodialytic phosphorus recovery from sewage sludge ash under kinetic control, Electrochim. Acta, 287 (2018) 49–59.
  39. H. Nakagawa, J. Ohta, Phosphorus Recovery from Sewage Sludge Ash: A Case Study in Gifu, Japan. In Phosphorus Recovery and Recycling, Springer, Singapore, 2019, pp. 149–155.
  40. R. Li, Z. Zhang, Y. Li, W. Teng, W. Wang, T. Yang, Transformation of apatite phosphorus and non-apatite inorganic phosphorus during incineration of sewage sludge, Chemosphere, 141 (2015) 57–61.
  41. R. Li, W. Teng, Y. Li, W. Wang, R. Cui, T. Yang, Potential recovery of phosphorus during the fluidized bed incineration of sewage sludge. J. Clean. Prod., 140 (2017) 964–970.
  42. K. Gorazda, Z. Kowalski, Z. Wzorek, From sewage sludge ash to calcium phosphate fertilizer, Pol. J. Chem. Technol., 14 (2012) 54–58.
  43. G. Borowski, M. Gajewska, E. Haustein, Possibilities of Ashes Utilization from Sewage Sludge Thermal Processing in a Fluidized Bed Boiler (Możliwości zagospodarowania popiołów z termicznego przekształcania osadów ściekowych w kotłach fluidalnych), Inżynieria i Ochrona Środowiska, 17 (2014) 393– 402 (in Polish).
  44. K. Gorazda, B. Tarko, Z. Wzorek, H. Kominko, A.K. Nowak, K. Kulczycka, A. Henlik, M. Smol, Fertilisers production from ashes after sewage sludge combustion–a strategy towards sustainable development, Environ. Res., 154 (2017) 171–180.
  45. Regulation of the Minister of the Environment of 20 January 2015 on the recovery process R10 (Jurnal of law 2015, item. 132) (in Polish).
  46. Ministry of Environment, Strategy for dealing with municipal sewage sludge for 2019–2022, Warsaw, 2018 (in Polish).
  47. M. Wlodarczyk-Makula, Transformation of persistent organic pollutions in the environment, Curr. Org. Chem., 22 (2018) 937–938.
  48. B. Macherzyński, M. Włodarczyk-Makuła, B. Skowron- Grabowska, M. Starostka-Patyk, Degradation of PCBs in sewage sludge during methane fermentation process concerning environmental management, Desal Wat. Treat., 57 (2016) 1163–1175.
  49. E. Wikarek-Paluch, C. Rosik-Dulewska, U. Karwaczynska, Mobility of selected heavy metals in municipal sewage sludge. Annual Set Environ Protect, Rocznik Ochrona Srodowiska, 18 (2016) 181–192.
  50. Act of 10 July 2007 on fertilizer and fertilization (Journal of law 2018, item 1259).
  51. C. Rosik-Dulewska, U. Karwaczynska, T. Ciesielczuk, Heavy metals in granulated sludge-ash mixtures used as components of fertilizes, Przem. Chem., 92 (2013) 1520–1524.
  52. Regulation of the Minister of Agriculture and Rural Development of June 18, 2008 on the Implementation of Certain Provisions of the Act on Fertilizer and Fertilization (Journal of law 2008, no. 119 item 765).
  53. T. Ciesielczuk, C. Rosik-Dulewska, E. Wiśniewska, Possibilities of coffee spent ground use as a slow action organo-mineral fertilizer, Annual Set Environ. Prot., 17 (2015) 422–437.
  54. Resolution No. 88 of the Council of Ministers of 1 July 2016 on the National Waste Management Plan 2022 (MP 2016, item 784).
  55. M. Smol, The importance of sustainable phosphorus management in the circular economy (CE) model: the Polish case study, J. Mater. Cycles Waste, 21 (2019) 227–238.
  56. Commission of European Communities. Communication No. 571, 2011. Roadmap to a Resource Efficient Europe. (COM no. 571, 2011).
  57. K.S. Le Corre, E. Valsami-Jones, P. Hobbs, S.A. Parsons, Phosphorus recovery from wastewater by struvitecrystallization: A review, Crit. Rev. Environ. Sci. Technol., 39 (2009) 433–477.
  58. Sustainable Sewage Sludge Management Fostering Phosphorus Recovery and Energy Efficiency. Available at: www.batchgeo. com/map/0f9d56a3aa57a51379a3cb23af27d202 (P-REX project 2018)
  59. M. Smol, The use of membrane processes for the removal of phosphorus from wastewater, Desal Wat. Treat., 128 (2018) 397–406.
  60. K. Gorazda, B. Tarko, S. Werle, Z. Wzorek, Sewage sludge as a fuel and raw material for phosphorus recovery: Combined process of gasification and P extraction, Waste Manage., 73 (2018) 404–415.
  61. S. Werle, S. Sobek, Gasification of sewage sludge within a circular economy perspective: a Polish case study, Environ. Sci. Pollut. Res., 26 (2019) 35422–35432.