1. A. Ayol, S.K. Dentel, A. Filibeli, Rheological characterization of sludges during belt filtration dewatering using an immobilization cell, J. Environ. Eng., 136 (2010) 992–999.
  2. N. Eshtiaghi, S.D. Yap, F. Markis, J.C. Baudez, P. Slatter, Clear model fluids to emulate the rheological properties of thickened digested sludge, Water Res., 46 (2012) 3104–3022.
  3. N. Eshtiaghi, F. Markis, S.D. Yap, J.C. Baudez, P. Slatter, Rheological characterisation of municipal sludge: a review, Water Res., 47 (2013) 5493–510.
  4. J.C. Baudez, About peak and loop in sludge rheograms, J. Environ. Manage., 78 (2006) 232–239.
  5. B.H. Chen, S.J. Lee, D.J. Lee, Rheological characteristics of the cationic polyelectrolyte flocculated wastewater sludge, Water Res, 39 (2005) 4429–4435.
  6. F. Chaari, G. Racineux, A. Poitou, M. Chaouche, Rheological behavior of sewage sludge and strain-induced dewatering, Rheol. Acta, 42 (2003) 273–279.
  7. J.C. Baudez, F. Markis, N. Eshtiaghi, P. Slatter, The rheological behaviour of anaerobic digested sludge, Water Res., 45 (2011) 5675–5680.
  8. E. Hong, A.M. Yeneneh, T.K. Sen, H.M. Ang, A. Kayaalp, A comprehensive review on rheological studies of sludge from various sections of municipal wastewater treatment plants for enhancement of process performance, Adv. Colloid Interface Sci., 257 (2018) 19–30.
  9. M. Mori, I. Seyssiecq, N. Roche, Rheological measurements of sewage sludge for various solids concentrations and geometry, Process Biochem., 41 (2006) 1656–1662.
  10. M.M. Abu-orf, S.K. Dentel, Rheology as tool for polymer dose assessment and control, J. Environ. Eng., 125 (1999) 1133–1142.
  11. F. Markis, J.C. Baudez, R. Parthasarathy, P. Slatter, N. Eshtiaghi, Predicting the apparent viscosity and yield stress of mixtures of primary, secondary and anaerobically digested sewage sludge: simulating anaerobic digesters, Water Res., 100 (2016) 568–579.
  12. E. Farno, J.C. Baudez, N. Eshtiaghi, Comparison between classical Kelvin–Voigt and fractional derivative Kelvin–Voigt models in prediction of linear viscoelastic behavior of waste activated sludge, Sci. Total Environ., 613–614 (2018) 1031–1036.
  13. J. Zhang, Y. Xue, N. Eshtiaghi, X. Dai, W. Tao, Z. Li, Evaluation of thermal hydrolysis efficiency of mechanically dewatered sewage sludge via rheological measurement, Water Res., 116 (2017) 34–43.
  14. F.L. Liang, M. Sauceau, G. Dusserre, J.L. Dirion, P. Arlabosse, Modelling of the rheological behavior of mechanically dewatered sewage sludge in uniaxial cyclic compression, Water Res., 147 (2018) 413–421.
  15. Y.J. Ma, C.W. Xia, H.Y. Yang, R.J. Zeng, A rheological approach to analyze aerobic granular sludge, Water Res., 50 (2014) 171–178.
  16. P.A. Moussas, A.I. Zouboulis, A new inorganic–organic composite coagulant, consisting of polyferric sulphate (PFS) and polyacrylamide (PAA), Water Res., 43 (2009) 3511–3524.
  17. Y. Satyawali, M. Balakrishnan, Effect of PAC addition on sludge properties in an MBR treating high strength wastewater, Water Res., 43 (2009) 1577–1588.
  18. Z. Liu, Y. Liu, A. Zhang, C. Zhang, X.C. Wang, Study on the process of aerobic granule sludge rapid formation by using the poly aluminum chloride (PAC), Chem. Eng. J., 250 (2014) 319–325.
  19. H. Saveyn, G.Pauwels, R. Timmerman, P. Meeren, Effect of polyelectrolyte conditioning on the enhanced dewatering of activated sludge by application of an electric field during the expression phase, Water Res., 39 (2005) 3012–3020.
  20. J.B. Conrardy, J. Vaxelaire, J. Olivier, Electro-dewatering of activated sludge: electrical resistance analysis, Water Res., 100 (2016) 194–200.
  21. G.H. Feng, L.Y. Liu, W. Tan, Effect of thermal hydrolysis on rheological behavior of municipal sludge, Ind. Eng. Chem. Res., 53 (2014) 11185–11192.
  22. C. Zhu, P.Y. Zhang, H.J. Wang, J. Ye, Conditioning of sewage sludge via combined ultrasonication-flocculation-skeleton building to improve sludge dewaterability, Ultrason. Sonochem., 40 (2018) 353–360.
  23. S. Yu, G. Zhang, J. Li, Z. Zhao, X. Kang, Effect of endogenous hydrolytic enzymes pretreatment on the anaerobic digestion of sludge, Bioresour. Technol., 146 (2013) 758–761.
  24. J. Guo, C. Chen, Sludge conditioning using the composite of a bioflocculant and PAC for enhancement in dewaterability, Chemosphere, 185 (2017) 277–283.
  25. H. Wei, J. Ren, A. Li, H. Yang, Sludge dewaterability of a starchbased flocculant and its combined usage with ferric chloride, Chem. Eng. J., 349 (2018) 737–747.
  26. H. Wei, B. Gao, J. Ren, A. Li, H. Yang, Coagulation/flocculation in dewatering of sludge: A review, Water Res., 143 (2018) 608–631.
  27. H.F. Wang, H. Hu, H.J. Wang, R.J. Zeng, Impact of dosing order of the coagulant and flocculant on sludge dewatering performance during the conditioning process, Sci. Total Environ., 643 (2018) 1065–1073.
  28. H. Yuan, X. Cheng, S. Chen, N. Zhu, Z. Zhou, New sludge pretreatment method to improve dewaterability of waste activated sludge, Bioresour. Technol., 102 (2011) 5659–5664.
  29. H. Koseoglu, N.O. Yigit, G. Civelekoglu, B.I. Harman, M. Kitis, Effects of chemical additives on filtration and rheological characteristics of MBR sludge, Bioresour. Technol., 117 (2012) 48–54.
  30. M. Ruiz-Hernando, J. Labanda, J. Llorens, Effect of ultrasonic waves on the rheological features of secondary sludge, Biochem. Eng. J., 52 (2010) 131–136.
  31. E. Dieudé-Fauvel, S.K. Dentel, Sludge conditioning: impact of polymers on floc structure, J. Residuals Sci. Technol., 8 (2011) 101–108.
  32. M. Ruiz-Hernando, J. Labanda, J. Llorens, Structural model to study the influence of thermal treatment on the thixotropic behavior of waste activated sludge, Chem. Eng. J., 262 (2015) 242–249.
  33. G.A. Ekama, The role and control of sludge age in biological nutrient removal activated sludge systems, Water Sci. Technol., 61 (2010) 1645–1652.
  34. G.A Schramm, A Practical Approach to Rheology and Rheometry, Petroleum Industry Press, 2009.
  35. J.C. Baudez, R.K. Gupta, N. Eshtiaghi, P. Slatter, The viscoelastic behavior of raw and anaerobic digested sludge: strong similarities with soft-glassy materials, Water Res., 47 (2013) 173–180.
  36. H.F. Wang, Y.J. Ma, H.J. Wang, H. Hu, H.Y. Yang, R.J. Zeng, Applying rheological analysis to better understand the mechanism of acid conditioning on activated sludge dewatering, Water Res., 122 (2017) 398–406.
  37. A.K. Garakani, N. Mostoufi, F. Sadeghi, M. Hosseinzadeh, H. Fatourechi, M. Sarrafzadeh, M. Mehrnia, Comparison between different models for rheological characterization of activated sludge, Iran. J. Environ. Health. Sci. Eng., 8 (2011) 255–264.
  38. P. Wei, Q. Tan, W. Uijttewaal, J.B. Lier, M. Kreuk, Experimental and mathematical characterisation of the rheological instability of concentrated waste activated sludge subject to anaerobic digestion, Chem. Eng. J., 349 (2018) 318–326.
  39. J.C. Baudez, Physical aging and thixotropy in sludge rheology, Appl. Rheol., 18 (2008) 1–8.
  40. B. Jin, B.M. Wilen, P. Lant, A comprehensive insight into floc characteristics and their impact on compressibility and settleability of activated sludge, Chem. Eng. J., 95 (2003) 221–234.
  41. N. Eshtiaghi, F. Markis, D. Zain, K.H. Mai, Predicting the apparent viscosity and yield stress of digested and secondary sludge mixtures, Water Res., 95 (2016) 159–164.
  42. L.B. Eldred, W.P. Bake, A.N. Palazotto, Kelvin–Voigt vs. fractional derivative model as constitutive relations for viscoelastic materials, AIAA J., 33 (1995) 547–550.