References
  -  T.J. Gallegos, B.A. Varela, S.S. Haines, M.A. Engle, Hydraulic
    fracturing water use variability in the United States and
    potential environmental implications, Water Resour. Res.,
    51 (2015) 5839–5845. 
-  D.J. Miller, X. Huang, H. Li, S. Kasemset, A. Lee, D. Agnihotri,
    T. Hayes, D.R. Paul, B.D. Freeman, Fouling-resistant membranes
    for the treatment of flowback water from hydraulic shale
    fracturing: a pilot study, J. Membr. Sci., 437 (2013) 265–275. 
-  C.T. Montgomery, M.B. Smith, Hydraulic fracturing: history of
    an enduring technology, J. Pet. Technol., 62 (2010) 26–40. 
-  S. Rassenfoss, From flowback to fracturing: water recycling
    grows in the Marcellus Shale, J. Pet. Technol., 63 (2011) 48–51. 
-  M.C. Brittingham, K.O. Maloney, A.M. Farag, D.D. Harper,
    Z.H. Bowen, Ecological risks of shale oil and gas development
    to wildlife, aquatic resources and their habitats, Environ. Sci.
    Technol., 48 (2014) 11034–11047. 
-  A.J. Kondash, E. Albright, A. Vengosh, Quantity of flowback and
    produced waters from unconventional oil and gas exploration,
    Sci. Total Environ., 574 (2017) 314–321. 
-  A. Altaee, N. Hilal, Dual-stage forward osmosis/pressure
    retarded osmosis process for hypersaline solutions and fracking
    wastewater treatment, Desalination, 350 (2014) 79–85. 
-  J.P. Nicot, B.R. Scanlon, R.C. Reedy, R.A. Costley, Source and fate
    of hydraulic fracturing water in the Barnett Shale: a historical
    perspective, Environ. Sci. Technol., 48 (2014) 2464–2471. 
-  J.M. Estrada, B. Rao, A review of the issues and treatment
    options for wastewater from shale gas extraction by hydraulic
    fracturing, Fuel, 182 (2016) 292–303. 
-  E.E. Yost, J. Stanek, R.S. Dewoskin, L.D. Burgoon, Overview of
    chronic oral toxicity values for chemicals present in hydraulic
    fracturing fluids, flowback, and produced waters, Environ. Sci.
    Technol., 50 (2016) 4788–4797. 
-  G.A. Lutzu, N.T. Dunford, Algal treatment of wastewater
    generated during oil and gas production using hydraulic
    fracturing technology, Environ. Technol., 40 (2019) 1027–1034. 
-  N.R. Mullins, A.J. Daugulis, The biological treatment of synthetic
    fracking fluid in an extractive membrane bioreactor: selective
    transport and biodegradation of hydrophobic and hydrophilic
    contaminants, J. Hazard. Mater., 371 (2019) 734–742. 
-  B. Akyon, D. Lipus, K. Bibby, Glutaraldehyde inhibits biological
    treatment of organic additives in hydraulic fracturing produced
    water, Sci. Total Environ., 666 (2019) 1161–1168. 
-  A. Butkovskyi, A.H. Faber, Y. Wang, K. Grolle, R. Hofman-Caris, H. Bruning, A.P. Van Wezel, H.H. Rijnaarts, Removal of
    organic compounds from shale gas flowback water, Water Res.,
    138 (2018) 47–55. 
-  D. García, E. Posadas, S. Blanco, G. Acién, P. García-Encina,
    S. Bolado, R. Muñoz, Evaluation of the dynamics of microalgae
    population structure and process performance during piggery
    wastewater treatment in algal-bacterial photobioreactors,
    Bioresour. Technol., 248 (2018) 120–126. 
-  Q. Wang, W. Jin, X. Zhou, S. Guo, S.H. Gao, C. Chen, R. Tu,
    S.F. Han, J. Jiang, X. Feng, Growth enhancement of biodieselpromising
    microalga Chlorella pyrenoidosa in municipal
    wastewater
    by polyphosphate-accumulating organisms,
    J. Cleaner Prod., 240 (2019) 118148. 
-  P. Foladori, S. Petrini, G. Andreottola, Evolution of real
    municipal wastewater treatment in photobioreactors and
    microalgae-bacteria consortia using real-time parameters, Chem.
    Eng. J., 345 (2018) 507–516. 
-  R.H. Wijffels, M.J. Barbosa, An outlook on microalgal biofuels,
    Science, 329 (2010) 796–799. 
-  R. Li, J. Yang, J. Pan, L. Zhang, W. Qin, Effect of immobilization
    on growth and organics removal of Chlorella in fracturing
    flowback fluids treatment, J. Environ. Manage., 226 (2018)
    163–168. 
-  A.M. Hammed, S.K. Prajapati, S. Simsek, H. Simsek, Growth
    regime and environmental remediation of microalgae, Algae,
    31 (2016) 189–204. 
-  L. Liu, Y. Zhao, X. Jiang, X. Wang, W. Liang, Lipid accumulation
    of Chlorella pyrenoidosa under mixotrophic cultivation using
    acetate and ammonium, Bioresour. Technol., 262 (2018) 342–346. 
-  J.I. Labbé, J.L. Ramos-Suárez, A. Hernández-Pérez, A. Baeza,
    F. Hansen, Microalgae growth in polluted effluents from the
    dairy industry for biomass production and phytoremediation,
    J. Environ. Chem. Eng., 5 (2017) 635–643. 
-  Z.Y. Liu, G.C. Wang, B.C. Zhou, Effect of iron on growth and
    lipid accumulation in Chlorella vulgaris, Bioresour. Technol.,
    99 (2008) 4717–4722. 
-  S.C. Ferreira, R.E. Bruns, H.S. Ferreira, G.D. Matos, J.M. David,
    G.C. Brandao, E.G.P. Da Silva, L.A. Portugal, P.S. Dos Reis,
    A.S. Souza, W.N.L. Dos Santos, Box–Behnken design: an
    alternative for the optimization of analytical methods, Anal.
    Chim. Acta, 597 (2007) 179–186. 
-  M. Mourabet, A. El Rhilassi, H. El Boujaady, M. Bennani-Ziatni,
    R. El Hamri, A. Taitai, Removal of fluoride from aqueous
    solution by adsorption on Apatitic tricalcium phosphate using
    Box–Behnken design and desirability function, Appl. Surf. Sci.,
    258 (2012) 4402–4410. 
-  R. Ragonese, M. Macka, J. Hughes, P. Petocz, The use of the
    Box–Behnken experimental design in the optimization and
    robustness testing of a capillary electrophoresis method for
    the analysis of ethambutol hydrochloride in a pharmaceutical
    formulation, J. Pharm. Biomed. Anal., 27 (2002) 995–1007. 
-  P. Singh, A. Guldhe, S. Kumari, I. Rawat, F. Bux, Investigation
    of combined effect of nitrogen, phosphorus and iron on lipid
    productivity of microalgae Ankistrodesmus falcatus, kj671624
    using response surface methodology, Biochem. Eng. J., 94 (2015)
    22–29. 
-  J.F. Fu, Y.Q. Zhao, X.D. Xue, W.C. Li, A.O. Babatunde,
    Multivariate-parameter optimization of acid blue-7 wastewater
	  treatment by Ti/TiO2 photoelectrocatalysis via the Box–
  Behnken design, Desalination, 243 (2009) 42–51. 
-  N. Thombare, U. Jha, S. Mishra, M.Z. Siddiqui, Guar gum as a
    promising starting material for diverse applications: a review,
    Int. J. Biol. Macromol., 88 (2016) 361–372. 
-  Y.X. Li, P. Yi, N.N. Wang, J. Liu, X.Q. Liu, Q.J. Yan, Z.Q. Jiang,
    High-level expression of β-mannanase (RmMan5A) in Pichia
    pastoris for partially hydrolyzed guar gum production, Int.
    J. Biol. Macromol., 105 (2017) 1171–1179. 
-  B. Jiang, Z. Sun, Y. Hou, L. Yang, F. Yang, X. Chen, X. Li, Isolation
    and properties of an endo-β-mannanase-producing Bacillus sp. lx114 capable of degrading guar gum, Prep. Biochem.
    Biotechnol., 46 (2015) 495–500. 
-  Z.Y. Ni, J.Y. Li, Z.Z. Xiong, L.H. Cheng, X.H. Xu, Role of
    granular activated carbon in the microalgal cultivation from
    bacteria contamination, Bioresour. Technol., 247 (2018) 36–43. 
-  H. Yan, C. Ye, C. Yin, Kinetics of phthalate ester biodegradation
    by Chlorella pyrenoidosa, Environ. Toxicol. Chem., 14 (1995)
    931–938. 
-  B. Richard, Principles of Ecology, Saunders College Publisher,
    Philadelphia, PA, 1988. 
-  K. Xu, Biological Mathematics, Chinese Academy of Sciences,
    Beijing, China, 1988.