1. T.W. Hao, P.Y. Xiang, H.R. Mackey, K. Chi, H. Lu, H.K. Chui, M.C. van Loosdrecht, G.H. Chen, A review of biological sulfate conversions in wastewater treatment, Water Res., 65 (2014) 1–21.
  2. M. Madani, M. Aliabadi, B. Nasernejad, R.K. Abdulrahman, M.Y. Kilic, K. Kestioglu, Treatment of olive mill wastewater using physico-chemical and Fenton processes, Desal. Wat. Treat., 53 (2013) 2031–2040.
  3. P. Chatterjee, M.M. Ghangrekar, S. Rao, S. Kumar, Biotic conversion of sulphate to sulphide and abiotic conversion of sulphide to sulphur in a microbial fuel cell using cobalt oxide octahedrons as cathode catalyst, Bioprocess. Biosyst. Eng., 40 (2017) 759–768.
  4. L.C. Reyes-Alvarado, A. Hatzikioseyian, E.R. Rene, E. Houbron, E. Rustrian, G. Esposito, P.N.L. Lens, Hydrodynamics and mathematical modelling in a low HRT inverse fluidized-bed reactor for biological sulphate reduction, Bioprocess. Biosyst. Eng., 41 (2018) 1869–1882.
  5. A. Sarti, M. Zaiat, Anaerobic treatment of sulfate-rich wastewater in an anaerobic sequential batch reactor (AnSBR) using butanol as the carbon source, J. Environ. Manage., 92 (2011) 1537–1541.
  6. Y. Hu, Z. Jing, Y. Sudo, Q. Niu, J. Du, J. Wu, Y.Y. Li, Effect of influent COD/SO42– ratios on UASB treatment of a synthetic sulfate-containing wastewater, Chemosphere, 130 (2015) 24–33.
  7. B. Zhang, J. Zhang, Q. Yang, C. Feng, Y. Zhu, Z. Ye, J. Ni, Investigation and optimization of the novel UASB–MFC integrated system for sulfate removal and bioelectricity generation using the response surface methodology (RSM), Bioresour. Technol., 124 (2012) 1–7.
  8. X. Lu, G. Zhen, J. Ni, T. Hojo, K. Kubota, Y.Y. Li. Effect of influent COD/SO42– ratios on biodegradation behaviors of starch wastewater in an upflow anaerobic sludge blanket (UASB) reactor, Bioresour. Technol., 214 (2016) 175–183.
  9. P. Yang, W. Liao, H. Li, Aerobic granular sludge formation and COD removal in a continuous-flow microbial fuel cell, Desal. Wat. Treat., 129 (2018) 189–193.
  10. K. Rabaey, K.V.D. Sompel, L. Maignien, N. Boon. Microbial fuel cells for sulfide removal, Environ. Sci. Technol., 40 (2006) 5218–5224.
  11. A. Angelov, S. Bratkova, A. Loukanov, Microbial fuel cell based on electroactive sulfate-reducing biofilm, Energy Convers. Manage., 67 (2013) 283–286.
  12. D.J. Lee, X. Liu, H.L. Weng, Sulfate and organic carbon removal by microbial fuel cell with sulfate-reducing bacteria and sulfide-oxidising bacteria anodic biofilm, Bioresour. Technol., 156 (2014) 14–19.
  13. K. Wang, S. Zhang, Z. Chen, R. Bao, Interactive effect of electrode potential on pollutants conversion in denitrifying sulfide removal microbial fuel cells, Chem. Eng. J., 339 (2018) 442–449.
  14. L. Zhong, S. Zhang, Y. Wei, R. Bao, Power recovery coupled with sulfide and nitrate removal in separate chambers using a microbial fuel cell, Biochem. Eng. J., 124 (2017) 6–12.
  15. M.M. Ghangrekar, S.S.R. Murthy, M. Behera, N. Duteanu, Effect of sulfate concentration in the wastewater on microbial fuel cell performance., Environ. Eng. Manage. J., 9 (2010) 1227–1234.
  16. S. Liu, L. Li, H. Li, H. Wang, P. Yang, Study on ammonium and organics removal combined with electricity generation in a continuous flow microbial fuel cell, Bioresour. Technol., 243 (2017) 1087–1096.
  17. J. Guo, Y. Kang, Characterization of sulfate-reducing bacteria anaerobic granular sludge and granulometric analysis with grey relation, Korean J. Chem. Eng., 35 (2018) 1829–1835.
  18. J. Huang, P. Yang, Y. Guo, K. Zhang, Electricity generation during wastewater treatment: an approach using an AFB– MFC for alcohol distillery wastewater, Desalination, 276 (2011) 373–378.
  19. APHA, Standard Methods for the Examination of Water and Wastewater, 20th ed., Persulfate Method, APHA, AWWA & WEF, Washington, 1998.
  20. Z. Wang, M. Gao, Z. She, S. Wang, C. Jin, Y. Zhao, S. Yang, L. Guo, Effects of salinity on performance, extracellular polymeric substances and microbial community of an aerobic granular sequencing batch reactor, Sep. Purif. Technol., 144 (2015) 223–231.
  21. W. Qiao, K. Takayanagi, Q. Li, M. Shofie, F. Gao, R. Dong, Y.Y. Li, Thermodynamically enhancing propionic acid degradation by using sulfate as an external electron acceptor in a thermophilic anaerobic membrane reactor, Water Res., 106 (2016) 320–329.
  22. X. Lu, J. Ni, G. Zhen, K. Kubota, Y.Y. Li, Response of morphology and microbial community structure of granules to influent COD/SO42– ratios in an upflow anaerobic sludge blanket (UASB) reactor treating starch wastewater, Bioresour. Technol., 256 (2018) 456–465.
  23. R.J.W. Meulepas, C.G. Jagersma, Y. Zhang, M. Petrillo, H. Cai, C.J. Buisman, A.J. Stams, P.N. Lens, Trace methane oxidation and the methane dependency of sulfate reduction in anaerobic granular sludge, FEMS Microbiol. Ecol., 72 (2010) 261–271.
  24. M.H.R.Z. Damianovic, E. Foresti, Anaerobic degradation of synthetic wastewaters at different levels of sulfate and COD/sulfate ratios in horizontal-flow anaerobic reactors (HAIB), Environ. Eng. Sci., 24 (2007) 383–393.
  25. V.F.D. Albuquerque, A.L.D. Barros, A.C. Lopes, A.B. dos Santos, R.F. do Nascimento, Removal of the metal ions Zn2+, Ni2+, and Cu2+ by biogenic sulfide in UASB reactor and speciation studies, Desal. Wat. Treat., 51 (2013) 2093–2101.
  26. J.L. Chen, R. Ortiz, T.W. Steele, D.C. Stuckey, Toxicants inhibiting anaerobic digestion: a review, Biotechnol. Adv., 32 (2014) 1523–1534.
  27. C. Huiliñir, R. Medina, S. Montalvo, A. Castillo, L. Guerrero, Biological nitrification in the presence of sulfide and organic matter: effect of zeolite on the process in a batch system, J. Chem. Technol. Biotechnol., 93 (2018) 2390–2398.
  28. F. Fdz-Polanco, M. Fdz-Polanco, N. Fernandez, M.A. Urueña, P.A. Garcia, S. Villaverde, New process for simultaneous removal of nitrogen and sulphur under anaerobic conditions, Water Res., 35 (2001) 1111–1114.
  29. C. Chen, A. Wang, N. Ren, H. Kan, D.J. Lee, Biological breakdown of denitrifying sulfide removal process in high-rate expanded granular bed reactor, Appl. Microbiol. Biotechnol., 81 (2008) 765–770.
  30. H. Greben, J. Maree, E. Eloff, K. Murray, Improved sulphate removal rates at increased sulphide concentration in the sulphidogenic bioreactor, Water SA, 31 (2005) 351–358.
  31. G. Na, D.E. Salt, The role of sulfur assimilation and sulfurcontaining compounds in trace element homeostasis in plants, Environ. Exp. Bot., 72 (2011) 18–25.
  32. H. Pauwels, V. Ayraud-Vergnaud, L. Aquilina, J. Molénat, The fate of nitrogen and sulfur in hard-rock aquifers as shown by sulfate-isotope tracing, Appl. Geochem., 25 (2010) 105–115.
  33. L. Wei, H. Han, J. Shen, Effects of temperature and ferrous sulfate concentrations on the performance of microbial fuel cell, Int. J. Hydrogen Energy, 38 (2013) 11110–11116.
  34. I. Ieropoulos, J. Greenman, C. Melhuish, J. Hart, Energy accumulation and improved performance in microbial fuel cells, J. Power Sources, 145 (2005) 253–256.
  35. G. Liu, S. Yu, H. Luo, R. Zhang, S. Fu, X. Luo, Effects of salinity anions on the anode performance in bioelectrochemical systems, Desalination, 351 (2014) 77–81.
  36. F. Zhao, N. Rahunen, J.R. Varcoe, A.J. Roberts, C. Avignone-Rossa, A.E. Thumser, R.C.T. Slade, Factors affecting the performance of microbial fuel cells for sulfur pollutants removal, Biosens. Bioelectron., 24 (2009) 1931–1936.
  37. N. Jannelli, R. Anna Nastro, V. Cigolotti, M. Minutillo, G. Falcucci, Low pH, high salinity: too much for microbial fuel cells?, Appl. Energy, 192 (2017) 543–550.
  38. S.F. Corsino, M. Capodici, M. Torregrossa, G. Viviani, Physical properties and extracellular polymeric substances pattern of aerobic granular sludge treating hypersaline wastewater, Bioresour. Technol., 229 (2017) 152–159.
  39. R. Campo, S.F. Corsino, M. Torregrossa, G.D. Bella, The role of extracellular polymeric substances on aerobic granulation with stepwise increase of salinity, Sep. Purif. Technol., 195 (2017) 12–20.
  40. Y.L. Kang, S. Pichiah, S. Ibrahim, Facile reconstruction of microbial fuel cell (MFC) anode with enhanced exoelectrogens selection for intensified electricity generation, Int. J. Hydrogen Energy, 42 (2017) 1661–1671.
  41. X. Zeng, Z. Zhang, X. Li, X. Zhang, J. Cao, M. Jebbar, K. Alain, Z. Shao, Anoxybacter fermentans gen. nov., sp. nov., a piezophilic, thermophilic, anaerobic, fermentative bacterium isolated from a deep-sea hydrothermal vent, Int. J. Syst. Evol. Microbiol., 65 (2014) 710–715.
  42. W.B. Hania, A. Postec, T. Aullo, A. Ranchou-Peyruse, G. Erauso, C. Brochier-Armanet, M. Hamdi, B. Ollivier, S. Saint-Laurent, M. Magot, M.L. Fardeau, Mesotoga infera sp. nov., a mesophilic member of the order Thermotogales, isolated from an underground gas storage aquifer, Int. J. Syst. Evol. Microbiol., 63 (2013) 3003–3008.
  43. K.A. Deweerd, L. Mandelco, R.S. Tanner, C.R. Woese, J.M. Suflita, Desulfomonile tiedjei gen. nov. and sp. nov., a novel anaerobic, dehalogenating, sulfate-reducing bacterium, Arch. Microbiol., 154 (1990) 23–30.
  44. Y.G. Zhao, Y. Zhang, Z. She, Y. Shi, M. Wang, M. Gao, L. Guo, Effect of substrate conversion on performance of microbial fuel cells and anodic microbial communities, Environ. Eng. Sci., 34 (2017) 666–674.
  45. S. Scheller, H. Yu, G.L. Chadwick, S.E. Mcglynn, V.J. Orphan, Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction, Science, 351 (2016) 703–707.
  46. J. Palatsi, J. Illa, F.X. Prenafeta-Boldú, M. Laureni, B. Fernandez, I. Angelidaki, X. Flotats, Long-chain fatty acids inhibition and adaptation process in anaerobic thermophilic digestion: batch tests, microbial community structure and mathematical modelling, Bioresour. Technol., 101 (2010) 2243–2251.