References

  1. X.B. Chen, S.H. Shen, L.J. Guo, S.S. Mao, Semiconductor-based photocatalytic hydrogen generation, Chem. Rev., 110 (2010) 6503–6570.
  2. D.B. Zeng, K. Yang, C.L. Yu, F.Y. Chen, X.X. Li, Z. Wu, H. Liu, Phase transformation and microwave hydrothermal guided a novel double Z-scheme ternary vanadate heterojunction with highly efficient photocatalytic performance, Appl. Catal., B, 237 (2018) 449–463.
  3. C.C. Chen, W.H. Ma, J.C. Zhao, Semiconductor-mediated photodegradation of pollutants under visible-light irradiation, Chem. Soc. Rev., 39 (2010) 4206–4219.
  4. C.L. Yu, Z. Wu, R.Y. Liu, D.D. Dionysiou, K. Yang, C.Y. Wang, H. Liu, Novel fluorinated Bi2MoO6 nanocrystals for efficient photocatalytic removal of water organic pollutants under different light source illumination, Appl. Catal., B, 209 (2017) 1–11.
  5. R.Y. Liu, Z. Wu, J. Tian, C.L. Yu, S.Y. Li, K. Yang, X.Q. Liu, M.C. Liu, The excellent dye-photosensitized degradation performance over hierarchical BiOCl nanostructures fabricated via a facile microwave-hydrothermal process, New J. Chem., 42 (2018) 137–149.
  6. C.L. Yu, Z. Wu, R.Y. Liu, H.B. He, W.H. Fan, S.S. Xue, The effects of Gd3+ doping on the physical structure and photocatalytic performance of Bi2MoO6 nanoplate crystals, J. Phys. Chem. Solids, 93 (2016) 7–13.
  7. M.N. Chong, B. Jin, C.W.K. Chow, C. Saint, Recent developments in photocatalytic water treatment technology: a review, Water Res., 44 (2010) 2997–3027.
  8. C.L. Yu, Z. Wu, R.Y. Liu, W. Fang, Novel N/Bi-BiOCl nanoplates synthesised in NH3 atmosphere and their enhanced photocatalytic activity, Mater. Res. Innovations, 22 (2018) 121–127.
  9. J.X. Low, J.G. Yu, M. Jaroniec, S. Wageh, A.A. Al-Ghamdi, Heterojunction photocatalysts, Adv. Mater., 29 (2017) 1601694– 1601713.
  10. M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S.M. Dunlop, J.W.J. Hamilton, J.A. Byrne, K. O’Shea, M.H. Entezari, D.D. Dionysiou, A review on the visible light active titanium dioxide photocatalysts for environmental applications, Appl. Catal., B, 125 (2012) 331–349.
  11. J.R. Chen, F.X. Qiu, W.Z. Xu, S.S. Cao, H.J. Zhu, Recent progress in enhancing photocatalytic efficiency of TiO2-based materials, Appl. Catal., A, 495 (2015) 131–140.
  12. M.Z. Ge, C.Y. Cao, J.Y. Huang, S.H. Li, A review of onedimensional TiO2 nanostructured materials for environmental and energy applications, J. Mater. Chem. A, 4 (2016) 6772–6801.
  13. H.J. Chen, L.Z. Wang, Nanostructure sensitization of transition metal oxides for visible-light photocatalysis, Beilstein J. Nanotechnol., 5 (2014) 696–710.
  14. S. Wojtyla, T. Baran, Insight on doped ZnS and its activity towards photocatalytic removing of Cr(VI) from wastewater in the presence of organic pollutants, Mater. Chem. Phys., 212 (2018) 103–112.
  15. H.J. Yu, R. Shi, Y.X. Zhao, T. Bian, Y.F. Zhao, C. Zhao, G.I.N. Waterhouse, L.Z. Wu, C.H. Tung, T.R. Zhang, Alkaliassisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible-light-driven hydrogen evolution, Adv. Mater., 29 (2017) 1605148–1605154.
  16. J.D. Li, C.L. Yu, W. Fang, L.H. Zhu, W.Q. Zhou, Q.Z. Fan, Preparation, characterization and photocatalytic performance of heterostructured AgCl/Bi2WO6 microspheres, Chin. J. Catal., 36 (2015) 987–993.
  17. G.Z. Wang, H.K. Yuan, J.L. Chang, B. Wang, A.L. Kuang, H. Chen, ZnO/MoX2 (X = S, Se) composites used for visible light photocatalysis, RSC Adv., 8 (2018) 10828–10835.
  18. H. Li, J. Li, Z.H. Ai, F.L. Jia, Oxygen vacancy-mediated photocatalysis of BiOCl: reactivity, selectivity, and perspectives, Angew. Chem. Int. Ed., 57 (2018) 122–138.
  19. Z. Wu, D.B. Zeng, X.Q. Liu, C.L. Yu, K. Yang, M.C. Liu, Hierarchical δ-Bi2O3/Bi2O2CO3 composite microspheres: phase transformation fabrication, characterization and high photocatalytic performance, Res. Chem. Intermed., 44 (2018) 5995–6010.
  20. P.Y. Xiao, J.F. Lou, H.X. Zhang, W.L. Song, X.L. Wu, H.J. Lin, J. Chen, S.J. Liu, X.K. Wang, Enhanced visible-light-driven photocatalysis from WS2 quantum dots coupled to BiOCl nanosheets: synergistic effect and mechanism insight, Catal. Sci. Technol., 8 (2018) 201–209.
  21. W. Jiang, H.Y. Fu, Y.M. Zhu, H.R. Yue, S.J. Yuan, B. Liang, Floatable superhydrophobic Ag2O photocatalyst without a modifier and its controllable wettability by particle size adjustment, Nanoscale, 10 (2018) 13661–13672.
  22. X.J. Wen, C.G. Niu, L. Zhang, C. Liang, G.M. Zeng, A novel Ag2O/CeO2 heterojunction photocatalysts for photocatalytic degradation of enrofloxacin: possible degradation pathways, mineralization activity and an in depth mechanism insight, Appl. Catal., B, 221 (2018) 701–714.
  23. C.L. Yu, L.F. Wei, W.Q. Zhou, D.D. Dionysiou, L.H. Zhu, Q. Shu, H. Liu, A visible-light-driven core-shell like Ag2S@Ag2CO3 composite photocatalyst with high performance in pollutants degradation, Chemosphere, 157 (2016) 250–261.
  24. J. Tian, T.J. Yan, Z. Qiao, L.L. Wang, W.J. Li, J.M. You, B.B. Huang, Anion-exchange synthesis of Ag2S/Ag3PO4 core/shell composites with enhanced visible and NIR light photocatalytic performance and the photocatalytic mechanisms, Appl. Catal., B, 209 (2017) 566–578.
  25. H. Xu, J. Yan, Y.G. Xu, Y.H. Song, H.M. Li, J.X. Xia, C.J. Huang, H.L. Wan, Novel visible-light-driven AgX/graphite-like C3N4 (X=Br, I) hybrid materials with synergistic photocatalytic activity, Appl. Catal., B, 129 (2013) 182–193.
  26. C. Zeng, Y.M. Hu, Y.X. Guo, T.R. Zhang, F. Dong, Y.H. Zhang, H.W. Huang, Facile in situ self-sacrifice approach to ternary hierarchical architecture Ag/AgX (X=Cl, Br, I)/AgIO3 distinctively promoting visible-light photocatalysis with composition-dependent mechanism, ACS Sustainable Chem. Eng., 4 (2016) 3305–3315.
  27. H.B. He, S.S. Xue, Z. Wu, C.L. Yu, K. Yang, L.H. Zhu, W.Q. Zhou, R.Y. Liu, Synthesis and characterization of robust Ag2S/Ag2WO4 composite microrods with enhanced photocatalytic performance, J. Mater. Res., 31 (2016) 2598–2607.
  28. S. Rajamohan, V. Kumaravel, R. Muthuramalingam, S. Ayyadurai, A. Abdel-Wahab, B.S. Kwak, M. Kang, S. Sreekantan, Fe3O4-Ag2WO4: facile synthesis, characterization and visible light assisted photocatalytic activity, New J. Chem., 41 (2017) 11722–11730.
  29. S.M. Wang, D.L. Li, C. Sun, S.G. Yang, Y. Guan, H. He, Synthesis and characterization of g-C3N4/Ag3VO4 composites with significantly enhanced visible-light photocatalytic activity for triphenylmethane dye degradation, Appl. Catal., B, 144 (2014) 885–892.
  30. V.R. Raja, D.R. Rosaline, A. Suganthi, M. Rajarajan, Ultrasonic assisted synthesis with enhanced visible-light photocatalytic activity of NiO/Ag3VO4 nanocomposite and its antibacterial activity, Ultrason. Sonochem., 44 (2018) 73–85.
  31. C.X. Zheng, H. Yang, Z.M. Cui, H.M. Zhang, X.X. Wang, A novel Bi4Ti3O12/Ag3PO4 heterojunction photocatalyst with enhanced photocatalytic performance, Nanoscale Res. Lett., 12 (2017) 608.
  32. H.L. Lin, H.F. Ye, B.Y. Xu, J. Cao, S.F. Chen, Ag3PO4 quantum dot sensitized BiPO4: a novel p-n junction Ag3PO4/BiPO4 with enhanced visible-light photocatalytic activity, Catal. Commun., 37 (2013) 55–59.
  33. J.H. Guo, H.X. Shi, X.B. Huang, H.F. Shi, Z.F. An, AgCl/Ag3PO4: a stable Ag-Based nanocomposite photocatalyst with enhanced photocatalytic activity for the degradation of parabens, J. Colloid Interface Sci., 515 (2018) 10–17.
  34. S.H. Guo, J.X. Bao, T. Hu, L.B. Zhang, L. Yang, J.H. Peng, C.Y. Jiang, Controllable synthesis porous Ag2CO3 nanorods for efficient photocatalysis, Nanoscale Res. Lett., 10 (2015) 193–200.
  35. P. Xiao, H.Y. Yuan, J.Q. Liu, Y.Y. Zheng, X.H. Bi, J.P. Zhang, Radical mechanism of isocyanide-alkyne cycloaddition by multicatalysis of Ag2CO3, solvent, and substrate, ACS Catal., 5 (2015) 6177–6184.
  36. C.W. Xu, Y.Y. Liu, B.B. Huang, H. Li, X.Y. Qin, X.Y. Zhang, Y. Dai, Preparation, characterization, and photocatalytic properties of silver carbonate, Appl. Surf. Sci., 257 (2011) 8732–8736.
  37. L. Zhou, L.Y. Liang, D. Talifu, A. Abuliai, Sonochemical fabrication of Ag2CO3 nanomaterial and influencing factors on photocatalytic properties, IOP Conf. Ser.: Mater. Sci. Eng., 167 (2017) 012032.
  38. C.L. Yu, L.F. Wei, J.C. Chen, Y. Xie, W.Q. Zhou, Q.Z. Fan, Enhancing the photocatalytic performance of commercial TiO2 crystals by coupling with trace narrow-band-gap Ag2CO3, Ind. Eng. Chem. Res., 53 (2014) 5759–5766.
  39. H.Q. Wang, J.Z. Li, P.W. Huo, Y.S. Yan, Q.F. Guang, Preparation of Ag2O/Ag2CO3/MWNTs composite photocatalysts for enhancement of ciprofloxacin degradation, Appl. Surf. Sci., 366 (2016) 1–8.
  40. C.L. Yu, G. Li, S. Kumar,K. Yang, R.C. Jin, Phase transformation synthesis of novel Ag2O/Ag2CO3 heterostructures with high visible light efficiency in photocatalytic degradation of pollutants, Adv. Mater., 26 (2014) 892–898.
  41. X.L. Zhao, Y.C. Su, X.D. Qi, X.J. Han, A facile method to prepare novel Ag2O/Ag2CO3 three-dimensional hollow hierarchical structures and their water purification function, ACS Sustainable Chem. Eng., 5 (2017) 6148–6158.
  42. S.S. Fang, C.Y. Ding, Q. Liang, Z.Y. Li, S. Xu, Y.Y. Peng, D.Y. Lu, In-situ precipitation synthesis of novel BiOCl/Ag2CO3, hybrids with highly efficient visible-light-driven photocatalytic activity, J. Alloys Compd., 684 (2016) 230–236.
  43. J. Wang, C. Dong, B.B. Jiang, K.L. Wu, J. Sun, X.Z. Li, W.J. Zhang, B. Zhang, X.W. Wei, Preparation of visible light-driven Ag2CO3/BiOBr composite photocatalysts with universal degradation abilities, Mater. Lett., 131 (2014) 108–111.
  44. N. Wang, L. Shi, L.Z. Yao, C.Y. Lu, Y. Shi, J.M. Sun, Highly improved visible-light-induced photocatalytic performance over BiOI/Ag2CO3 heterojunctions, RSC Adv., 8 (2018) 537–546.
  45. H. Xu, J.X. Zhu, Y.X. Song, T.T. Zhu, W.K. Zhao, Y.H. Song, Z.L. Da, C.B. Liu, H.M. Li, Fabrication of AgX-loaded Ag2CO3 (X=Cl, I) composites and their efficient visible-light-driven photocatalytic activity, J. Alloys Compd., 622 (2015) 347–357.
  46. H.J. Dong, G. Chen, J.X. Sun, Y.J. Feng, C.M. Li, G.H. Xiong, C.D. Lv, Highly-effective photocatalytic properties and interfacial transfer efficiencies of charge carriers for the novel Ag₂CO₃/ AgX heterojunctions achieved by surface modification, Dalton Trans., 43 (2014) 7282–7289.
  47. J.J. Li, W.L. Yang, J.Q. Ning, Y.J. Zhong, Y. Hu, Rapid formation of AgnX (X=S, Cl, PO4, C2O4) nanotubes via an acid-etching anion exchange reaction, Nanoscale, 6 (2014) 5612–5615.
  48. N. Yu, R.H. Dong, J.J. Liu, K.F. Huang, B.Y. Geng, Synthesis of Ag/Ag2CO3 heterostructures with high length–diameter ratios for excellent photoactivity and anti-photocorrosion, RSC Adv., 6 (2014) 103938–103943.
  49. S.Q. Liu, W. Li, G.P. Dai, Q.F. Hou, Fabrication of Ag2CO3/SrCO3 rods with highly efficient visible-light photocatalytic activity, Rare Met. Mater. Eng., 46 (2017) 312–316.
  50. G. Dai, S. Li, S. Liu, Y. Liang, H. Zhao, Improved photocatalytic activity and stability of nano-sized Ag/Ag2CO3 plasmonic photocatalyst by surface modification of Fe(III) nanocluster, J. Chin. Chem. Soc., 62 (2015) 944–950.
  51. J. Tian, R.Y. Liu, Z. Liu, C.L. Yu, M.C. Liu, Boosting the photocatalytic performance of Ag2CO3, crystals in phenol degradation via coupling with trace N-CQDs, Chin. J. Catal., 38 (2017) 1999–2008.
  52. S.Q. Liu, S. Wang, G.P. Dai, J. Lu, K. Liu, Enhanced visiblelight photocatalytic activity and stability of nano-Sized Ag2CO3 combined with carbon nanotubes, Acta Phys. Chim. Sin., 30 (2014) 2121–2126.
  53. G.P. Dai, S.Q. Liu, Y. Liang, K. Liu, Fabrication of a nano-sized Ag2CO3/reduced graphene oxide photocatalyst with enhanced visible-light photocatalytic activity and stability, RSC Adv., 4 (2014) 34226–34231.
  54. J.D. Li, L.F. Wei, C.L. Yu, W. Fang, Y. Xie, W.Q. Zhou, L.H. Zhu, Preparation and characterization of graphene oxide/Ag2CO3 photocatalyst and its visible light photocatalytic activity, Appl. Surf. Sci., 358 (2015) 168–174.
  55. H. Xu, Y.X. Song, Y.H. Song, J.X. Zhu, T.T. Zhu, C.B. Liu, D.X. Zhao, Q. Zhang, H.M. Li, Synthesis and characterization of g-C3N4/Ag2CO3 with enhanced visible-light photocatalytic activity for the degradation of organic pollutants, RSC Adv., 4 (2014) 34539–34547.
  56. J. Tian, Z. Liu, D.B. Zeng, C.L. Yu, X.Q. Liu, K. Yang, H. Liu, The preparation and characterization of CaMg(CO3)2@Ag2CO3/Ag2S/NCQD nanocomposites and their photocatalytic performance in phenol degradation, J. Nanopart. Res., 20 (2018) 182.
  57. J. Tian, Z. Wu, Z. Liu, C.L. Yu, K. Yang, L.H. Zhu, W.Y. Huang, Y. Zhou, Low-cost and efficient visible-light-driven CaMg(CO3)2 @Ag2CO3 microspheres fabricated via an ion exchange route, Chin. J. Catal., 38 (2017) 1899–1908.
  58. Y.X. Song, J.X. Zhu, H. Xu, C. Wang, Y.G. Xu, H.Y. Ji, K. Wang, Q. Zhang, H.M. Li, Synthesis, characterization and visible-light photocatalytic performance of Ag2CO3, modified by grapheneoxide, J. Alloys Compd., 592 (2014) 258–265.
  59. S.S. Wu, S.F. Yin, H.Q. Cao, Y.X. Lu, J.F. Yin, B.J. Li, Glucosan controlled biomineralization of SrCO3 complex nanostructures with superhydrophobicity and adsorption properties, J. Mater. Chem., 21 (2011) 8734–8741.
  60. P. Lu, X. Hu, Y.J. Li, M. Zhang, X.P. Liu, Y.Z. He, F. Dong, M. Fu, Z. Zhang, One-step preparation of a novel SrCO3/g-C3N4 nanocomposite and its application in selective adsorption of crystal violet, RSC Adv., 8 (2018) 6315–6325.
  61. X.F. Wu, H. Li, L.S. Sun, J.Z. Su, J.R. Zhang, W.G. Zhang, M. Zhang, G.W. Sun, L. Zhan, M. Zhang, One-step hydrothermal synthesis of visible-light-driven In2.77S4/SrCO3 heterojunction with efficient photocatalytic activity for degradation of methyl orange and tetracycline, Appl. Phys. A, 124 (2018) 584–592.
  62. Y.C. Rui, H. Xiong, B. Su, H.Z. Wang, Q.H. Zhang, J.L. Xu, M.B. Peter, Liquid-liquid interface assisted synthesis of SnO2 nanorods with tunable length for enhanced performance in dye-sensitized solar cells, Electrochim. Acta, 227 (2017) 49–60.
  63. C.L. Yu, K. Yang, Q. Shu, J.C. Yu, F.F. Cao, X. Lin, X.C. Zhou, Preparation, characterization and photocatalytic performance of Mo-doped ZnO photocatalysts, Sci. China Chem., 55 (2012) 1802–1810.